Skip to main content
Log in

Predictors of outcome in patients with parvovirus B19 positive endomyocardial biopsy

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Objective

Primary objective was to establish the prognostic value of the myocardial load of PVB19 genomes in patients presenting for work-up of myocarditis and/or unclear cardiomyopathy in comparison to clinical, and CMR parameters.

Methods

108 consecutive patients who underwent EMB because of suspected myocarditis and/or unclear cardiomyopathy, and had evidence of myocardial PVB19 genome, were enrolled. Primary endpoint was all-cause mortality; secondary endpoint was a composite of cardiac mortality and hospitalization for heart failure.

Results

Mean LV-EF was 40 %. We found n = 27 patients to have a viral load ≥500 GE (IQR 559–846), n = 72 had 100–499 GE, and n = 9 had <100 GE. Immunohistology revealed chronic myocarditis in n = 66, acute myocarditis in n = 1, DCM in n = 17, PVB19 genome only in n = 13, and other pathologies in n = 11. During follow-up 11 patients died, two suffered SCD but were successfully shocked by ICD, and 21 were hospitalized for heart failure. Interestingly, not the viral load, but functional parameters such as LV-EF, LV-EDV (endpoint 2), as well as the histologic diagnosis of DCM and the presence of LGE (for all endpoints) reached statistical significance. In fact, the presence of LGE yields an odds-ratio for a lethal event of 8.56 (endpoint 1), and of 5.52 for endpoint 2. No patient with normal LV-EF, or the absence of LGE, suffered cardiac death during long-term follow-up.

Conclusion

The viral load of PVB19 genomes in the myocardium is not related to the long-term outcome. Furthermore, this study suggests a growing role of imaging for risk stratification in non-ischemic myocardial disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CAD:

Coronary artery disease

CMR:

Cardiovascular magnetic resonance

DCM:

Dilated cardiomyopathy

ECG:

Electrocardiogram

GE:

Genome equivalents per microgram of isolated nucleic acids

HR:

Hazard ratio

ICD:

Implantable cardioverter-defibrillator

IQR:

Interquartile range

LGE:

Late gadolinium enhancement

LV:

Left ventricle

LV-EDV:

Left ventricular end-diastolic volume

LV-EF:

Left ventricular ejection fraction

LV-ESV:

Left ventricular end-systolic volume

PVB19:

Parvovirus B19

SCD:

Sudden cardiac death

References

  1. Gore I, Saphir O (1947) Myocarditis; a classification of 1402 cases. Am Heart J 34:827–830

    Article  PubMed  CAS  Google Scholar 

  2. Saphir O (1941) Myocarditis: a general review, with an analysis of 240 cases. Arch Pathol 32:1000–1051

    Google Scholar 

  3. Cooper LT, Jr. Myocarditis (2009) The New England journal of medicine 360:1526–38

  4. Kindermann I, Kindermann M, Kandolf R et al (2008) Predictors of outcome in patients with suspected myocarditis. Circulation 118:639–648

    Article  PubMed  Google Scholar 

  5. Grun S, Schumm J, Greulich S et al (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59:1604–1615

    Article  PubMed  Google Scholar 

  6. Bock CT, Klingel K, Kandolf R (2010) Human parvovirus B19-associated myocarditis. New Engl J Med 362:1248–1249

    Article  PubMed  CAS  Google Scholar 

  7. Caforio AL, Pankuweit S, Arbustini E et al (2013) Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur Heart J 34(2636–48):2648a–2648d

    Google Scholar 

  8. Stewart GC, Lopez-Molina J, Gottumukkala RV et al (2011) Myocardial parvovirus B19 persistence: lack of association with clinicopathologic phenotype in adults with heart failure. Circ Heart Fail 4:71–78

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mahrholdt H, Goedecke C, Wagner A et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  10. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35

    Article  PubMed  PubMed Central  Google Scholar 

  11. Simonetti OP, Kim RJ, Fieno DS et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218:215–223

    Article  PubMed  CAS  Google Scholar 

  12. Mahrholdt H, Wagner A, Holly TA et al (2002) Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 106:2322–2327

    Article  PubMed  CAS  Google Scholar 

  13. Choudhury L, Mahrholdt H, Wagner A et al (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 40:2156–2164

    Article  PubMed  Google Scholar 

  14. Mahrholdt H, Wagner A, Deluigi CC et al (2006) Presentation, patterns of myocardial damage, and clinical course of viral myocarditis. Circulation 114:1581–1590

    Article  PubMed  Google Scholar 

  15. Bock CT, Duchting A, Utta F et al (2014) Molecular phenotypes of human parvovirus B19 in patients with myocarditis. World J Cardiol 6:183–195

    Article  PubMed  PubMed Central  Google Scholar 

  16. Dennert R, van Paassen P, Wolffs P et al (2012) Differences in virus prevalence and load in the hearts of patients with idiopathic dilated cardiomyopathy with and without immune-mediated inflammatory diseases. Clin Vaccine Immunol 19:1182–1187

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Norja P, Hokynar K, Aaltonen LM et al (2006) Bioportfolio: lifelong persistence of variant and prototypic erythrovirus DNA genomes in human tissue. Proc Natl Acad Sci USA 103:7450–7453

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Di Bella G, Florian A, Oreto L et al (2012) Electrocardiographic findings and myocardial damage in acute myocarditis detected by cardiac magnetic resonance. Clin Res Cardiol 101(8):617–624

    Article  PubMed  Google Scholar 

  19. Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887

    Article  PubMed  Google Scholar 

  20. Schenk T, Enders M, Pollak S, Hahn R, Huzly D (2009) High prevalence of human parvovirus B19 DNA in myocardial autopsy samples from subjects without myocarditis or dilative cardiomyopathy. J Clin Microbiol 47:106–110

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Mason JW, O’Connell JB, Herskowitz A et al (1995) A clinical trial of immunosuppressive therapy for myocarditis. The Myocarditis Treatment Trial Investigators. New Engl J Med 333:269–275

    Article  PubMed  CAS  Google Scholar 

  22. Bardy GH, Lee KL, Mark DB et al (2005) Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. New Engl J Med 352:225–237

    Article  PubMed  CAS  Google Scholar 

  23. Greulich S, Deluigi CC, Gloekler S et al (2013) CMR imaging predicts death and other adverse events in suspected cardiac sarcoidosis. JACC Cardiovas Imaging 6:501–511

    Article  Google Scholar 

  24. Schumm J, Greulich S, Wagner A et al (2014) Cardiovascular magnetic resonance risk stratification in patients with clinically suspected myocarditis. J Cardiovasc Magn Reson 16:14

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded in part by the Robert Bosch Foundation (1) clinical research grant for CMR risk stratification in HCM and (2) clinical research grant for inflammatory heart disease KKF-11-18, KKF-13-2. The authors thank Prof. Dr. Dr. Günter Schneider, Universitätsklinikum des Saarlandes, Klinik für Radiologie, Homburg/Saar, Germany for supporting CMR Analysis in Homburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Mahrholdt.

Ethics declarations

Conflict of interest

None.

Informed consent

All patients gave informed consent prior to their inclusion in the study; the study protocol conformed to the ethical guidelines of the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greulich, S., Kindermann, I., Schumm, J. et al. Predictors of outcome in patients with parvovirus B19 positive endomyocardial biopsy. Clin Res Cardiol 105, 37–52 (2016). https://doi.org/10.1007/s00392-015-0884-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-015-0884-6

Keywords

Navigation