Skip to main content

Advertisement

Log in

Ivabradine therapy to unmask heart rate-independent effects of β-blockers on pulse wave reflections

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Prior studies suggest that β-blockers lead to increased pulse wave reflections, thereby negating the blood pressure lowering effects on cardiovascular mortality. Parts of these effects may be induced by the heart rate reduction under β-blockade. The aim of this study was to unmask heart rate-independent effects of β-blockade on pulse wave reflections by switching therapy from β-blockers to ivabradine, an I f channel inhibitor without impact on systemic hemodynamics.

Methods

14 male patients (age 61 ± 3 years, LVEF 62 ± 1 %) with arterial hypertension and coronary artery disease (CAD) under chronic β-blocker therapy at moderate dosage and additional renin-angiotensin system-blocking therapy were included. We determined radial augmentation index (rAI) by radial applanation tonometry in patients under β-blockade both at rest and during early recovery after exercise. β-Blockers were then replaced by ivabradine. Six weeks later, patients were re-tested at rest and after exercise under ivabradine therapy.

Results

Mean heart rate (68 ± 3 vs. 63 ± 3 bpm; p = ns) and resting mean arterial pressure (98 ± 2 vs. 98 ± 2 mmHg; p = ns) were not different between β-blocker or ivabradine therapy, respectively. The rAI remained unchanged after switching therapy from β-blocker to ivabradine (86 ± 2 vs. 84 ± 4 %; p = ns). Post exercise, the rAI revealed an identical decrease in both groups (−7.2 ± 2.4 vs. −5.4 ± 2.5 %, p = ns). The increase in heart rate between resting conditions and early recovery post exercise was inversely correlated with the decrease of rAI under β-blockade (r = −0.70; p < 0.01) and showed a trend towards correlation under ivabradine (r = −0.52; p = 0.07).

Conclusion

In men at the age of 60 years and CAD, β-blockade does not exert heart rate-independent, pleiotropic effects on peripheral pulse wave reflections, both at rest or after exercise. Our results fit well within recent studies, demonstrating the fundamental influence of heart rate on rAI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mancia G, Fagard R, Narkiewicz K, Redon J et al (2013) 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur Heart J 34(28):2159–2219

    Article  PubMed  Google Scholar 

  2. Montalescot G, Sechtem U, Achenbach S, Andreotti F et al (2013) ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003

    Google Scholar 

  3. Dahlof B, Devereux RB, Kjeldsen SE, Julius S et al (2002) Cardiovascular morbidity and mortality in the Losartan intervention for endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 359(9311):995–1003

    Article  CAS  PubMed  Google Scholar 

  4. Bangalore S, Messerli FH, Kostis JB, Pepine CJ (2007) Cardiovascular protection using beta-blockers: a critical review of the evidence. J Am Coll Cardiol 50(7):563–572

    Article  CAS  PubMed  Google Scholar 

  5. Bangalore S, Steg G, Deedwania P, Crowley K et al (2012) Beta-blocker use and clinical outcomes in stable outpatients with and without coronary artery disease. JAMA 308(13):1340–1349

    Article  CAS  PubMed  Google Scholar 

  6. Williams B, Lacy PS, Thom SM, Cruickshank K et al (2006) Differential impact of blood pressure-lowering drugs on central aortic pressure and clinical outcomes: principal results of the Conduit Artery Function Evaluation (CAFE) study. Circulation 113(9):1213–1225

    Article  CAS  PubMed  Google Scholar 

  7. Casey DP, Curry TB, Joyner MJ, Charkoudian N et al (2012) Acute beta-adrenergic blockade increases aortic wave reflection in young men and women: differing mechanisms between sexes. Hypertension 59(1):145–150

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Borer JS, Le Heuzey JY (2008) Characterization of the heart rate-lowering action of ivabradine, a selective I(f) current inhibitor. Am J Ther 15(5):461–473

    Article  PubMed  Google Scholar 

  9. Vilaine JP (2006) The discovery of the selective I(f) current inhibitor ivabradine. A new therapeutic approach to ischemic heart disease. Pharmacol Res 53(5):424–434

    Article  CAS  PubMed  Google Scholar 

  10. Heusch G, Skyschally A, Gres P, van Caster P et al (2008) Improvement of regional myocardial blood flow and function and reduction of infarct size with ivabradine: protection beyond heart rate reduction. Eur Heart J 29(18):2265–2275

    Article  PubMed  Google Scholar 

  11. Taylor J (2012) The 2012 ESC Guidelines on Heart Failure. Eur Heart J 33(14):1703–1704

    Article  PubMed  Google Scholar 

  12. Bohm M, Borer J, Ford I, Gonzalez-Juanatey JR et al (2013) Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: analysis from the SHIFT study. Clin Res Cardiol 102(1):11–22

    Article  PubMed  Google Scholar 

  13. Werdan K, Ebelt H, Nuding S, Hopfner F et al (2012) Ivabradine in combination with beta-blocker improves symptoms and quality of life in patients with stable angina pectoris: results from the ADDITIONS study. Clin Res Cardiol 101(5):365–373

    Article  CAS  PubMed  Google Scholar 

  14. Fischer-Rasokat U, Brenck F, Zeiher AM, Spyridopoulos I (2009) Radial augmentation index unmasks premature coronary artery disease in younger males. Blood Press Monit 14(2):59–67

    Article  PubMed  Google Scholar 

  15. Nichols WW (2005) Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am J Hypertens 18(1 Pt 2):3S–10S

    Article  PubMed  Google Scholar 

  16. Wilkinson IB, MacCallum H, Flint L, Cockcroft JR et al (2000) The influence of heart rate on augmentation index and central arterial pressure in humans. J Physiol 525(Pt 1):263–270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Casey DP, Curry TB, Charkoudian N, Joyner MJ et al (2013) The effects of acute beta-adrenergic blockade on aortic wave reflection in postmenopausal women. Am J Hypertens 26(4):503–510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Millasseau SC, Patel SJ, Redwood SR, Ritter JM et al (2003) Pressure wave reflection assessed from the peripheral pulse: is a transfer function necessary? Hypertension 41(5):1016–1020

    Article  CAS  PubMed  Google Scholar 

  19. Hirata K, Kojima I, Momomura S (2013) Noninvasive estimation of central blood pressure and the augmentation index in the seated position: a validation study of two commercially available methods. J Hypertens 31(3):508–515 discussion 515

    Article  CAS  PubMed  Google Scholar 

  20. Rezai MR, Goudot G, Winters C, Finn JD et al (2011) Calibration mode influences central blood pressure differences between SphygmoCor and two newer devices, the Arteriograph and Omron HEM-9000. Hypertens Res 34(9):1046–1051

    Article  PubMed  Google Scholar 

  21. Morgan T, Lauri J, Bertram D, Anderson A (2004) Effect of different antihypertensive drug classes on central aortic pressure. Am J Hypertens 17(2):118–123

    Article  CAS  PubMed  Google Scholar 

  22. Chen CH, Ting CT, Lin SJ, Hsu TL et al (1995) Different effects of fosinopril and atenolol on wave reflections in hypertensive patients. Hypertension 25(5):1034–1041

    Article  CAS  PubMed  Google Scholar 

  23. Olafiranye O, Qureshi G, Salciccioli L, Weber M et al (2008) Association of beta-blocker use with increased aortic wave reflection. J Am Soc Hypertens 2(2):64–69

    Article  PubMed  Google Scholar 

  24. Drouin A, Gendron ME, Thorin E, Gillis MA et al (2008) Chronic heart rate reduction by ivabradine prevents endothelial dysfunction in dyslipidaemic mice. Br J Pharmacol 154(4):749–757

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Custodis F, Baumhakel M, Schlimmer N, List F et al (2008) Heart rate reduction by ivabradine reduces oxidative stress, improves endothelial function, and prevents atherosclerosis in apolipoprotein E-deficient mice. Circulation 117(18):2377–2387

    Article  CAS  PubMed  Google Scholar 

  26. Couvreur N, Tissier R, Pons S, Chetboul V et al (2010) Chronic heart rate reduction with ivabradine improves systolic function of the reperfused heart through a dual mechanism involving a direct mechanical effect and a long-term increase in FKBP12/12.6 expression. Eur Heart J 31(12):1529–1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Yue-Chun L, Teng Z, Na-Dan Z, Li-Sha G et al (2012) Comparison of effects of ivabradine versus carvedilol in murine model with the Coxsackievirus B3-induced viral myocarditis. PLoS One 7(6):e39394

    Article  PubMed Central  PubMed  Google Scholar 

  28. Busseuil D, Shi Y, Mecteau M, Brand G et al (2010) Heart rate reduction by ivabradine reduces diastolic dysfunction and cardiac fibrosis. Cardiology 117(3):234–242

    Article  CAS  PubMed  Google Scholar 

  29. Becher PM, Lindner D, Miteva K, Savvatis K et al (2012) Role of heart rate reduction in the prevention of experimental heart failure: comparison between If-channel blockade and beta-receptor blockade. Hypertension 59(5):949–957

    Article  CAS  PubMed  Google Scholar 

  30. Colin P, Ghaleh B, Monnet X, Su J et al (2003) Contributions of heart rate and contractility to myocardial oxygen balance during exercise. Am J Physiol Heart Circ Physiol 284(2):H676–H682

    CAS  PubMed  Google Scholar 

  31. Simon L, Ghaleh B, Puybasset L, Giudicelli JF et al (1995) Coronary and hemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. J Pharmacol Exp Ther 275(2):659–666

    CAS  PubMed  Google Scholar 

  32. Heusch G, Baumgart D, Camici P, Chilian W et al (2000) Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101(6):689–694

    Article  CAS  PubMed  Google Scholar 

  33. Studinger P, Tabak AG, Chen CH, Salvi P et al (2013) The effect of low-dose carvedilol, nebivolol, and metoprolol on central arterial pressure and its determinants: a randomized clinical trial. J Clin Hypertens (Greenwich)

  34. Briasoulis A, Oliva R, Kalaitzidis R, Flynn C et al (2013) Effects of nebivolol on aortic compliance in patients with diabetes and maximal renin angiotensin system blockade: the EFFORT study. J Clin Hypertens (Greenwich) 15(7):473–479

    Article  CAS  Google Scholar 

  35. Eeftinck Schattenkerk DW, van den Bogaard B, Cammenga M, Westerhof BE et al (2013) Lack of difference between nebivolol/hydrochlorothiazide and metoprolol/hydrochlorothiazide on aortic wave augmentation and central blood pressure. J Hypertens

  36. Lund-Johansen P (1979) Hemodynamic consequences of long-term beta-blocker therapy: a 5-year follow-up study of atenolol. J Cardiovasc Pharmacol 1(5):487–495

    Article  CAS  PubMed  Google Scholar 

  37. Asmar RG, Kerihuel JC, Girerd XJ, Safar ME (1991) Effect of bisoprolol on blood pressure and arterial hemodynamics in systemic hypertension. Am J Cardiol 68(1):61–64

    Article  CAS  PubMed  Google Scholar 

  38. Ting CT, Chen CH, Chang MS, Yin FC (1995) Short- and long-term effects of antihypertensive drugs on arterial reflections, compliance, and impedance. Hypertension 26(3):524–530

    Article  CAS  PubMed  Google Scholar 

  39. Heusch G (2008) Heart rate in the pathophysiology of coronary blood flow and myocardial ischaemia: benefit from selective bradycardic agents. Br J Pharmacol 153(8):1589–1601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Campbell R, Fisher JP, Sharman JE, McDonnell BJ et al (2011) Contribution of nitric oxide to the blood pressure and arterial responses to exercise in humans. J Hum Hypertens 25(4):262–270

    Article  CAS  PubMed  Google Scholar 

  41. Doonan RJ, Scheffler P, Yu A, Egiziano G et al (2011) Altered arterial stiffness and subendocardial viability ratio in young healthy light smokers after acute exercise. PLoS One 6(10):e26151

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Sugawara J, Komine H, Hayashi K, Maeda S et al (2007) Relationship between augmentation index obtained from carotid and radial artery pressure waveforms. J Hypertens 25(2):375–381

    Article  CAS  PubMed  Google Scholar 

  43. Nurnberger J, Keflioglu-Scheiber A, Opazo Saez AM, Wenzel RR et al (2002) Augmentation index is associated with cardiovascular risk. J Hypertens 20(12):2407–2414

    Article  PubMed  Google Scholar 

  44. van Trijp MJ, Bos WJ, Uiterwaal CS, Oren A et al (2004) Determinants of augmentation index in young men: the ARYA study. Eur J Clin Invest 34(12):825–830

    Article  PubMed  Google Scholar 

  45. Weber T, Auer J, O’Rourke MF, Kvas E et al (2004) Arterial stiffness, wave reflections, and the risk of coronary artery disease. Circulation 109(2):184–189

    Article  PubMed  Google Scholar 

  46. Mitchell GF, Parise H, Benjamin EJ, Larson MG et al (2004) Changes in arterial stiffness and wave reflection with advancing age in healthy men and women: the Framingham Heart Study. Hypertension 43(6):1239–1245

    Article  CAS  PubMed  Google Scholar 

  47. Fantin F, Mattocks A, Bulpitt CJ, Banya W et al (2007) Is augmentation index a good measure of vascular stiffness in the elderly? Age Ageing 36(1):43–48

    Article  PubMed  Google Scholar 

  48. McEniery CM, Yasmin, Hall IR, Qasem A et al (2005) Normal vascular aging: differential effects on wave reflection and aortic pulse wave velocity: the Anglo-Cardiff Collaborative Trial (ACCT). J Am Coll Cardiol 46(9):1753–60

Download references

Acknowledgments

H. Möllmann and C. Hamm report receiving lecture fees from Servier.

Conflict of interest

No other potential conflict of interest relevant to this article was reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Fischer-Rasokat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischer-Rasokat, U., Honold, J., Lochmann, D. et al. Ivabradine therapy to unmask heart rate-independent effects of β-blockers on pulse wave reflections. Clin Res Cardiol 103, 487–494 (2014). https://doi.org/10.1007/s00392-014-0679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-014-0679-1

Keywords

Navigation