Skip to main content
Log in

The effects of exercise at high altitude on high-sensitivity cardiac troponin release and associated biventricular cardiac function

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

It has been consistently shown that heavy exercise leads to cardiac troponin (cTn) release and variable changes in post exercise cardiac function. This relationship has not been explored at increasing or significant high altitude (HA). This study assessed the effects of exercise at progressively increasing HA on high-sensitivity (hs)-cTnT levels and their relationship to biventricular cardiac function and severity of acute mountain sickness (AMS).

Methods

Transthoracic echocardiograms, hs-cTnT levels and AMS scores were measured at rest at 1,300 m then repeated post exercise and 12 h later after progressive trekking to 3,440, 4,270 m and at 5,150 m (after trekking to 5,643 m) on 19 healthy subjects (age 35.4 ± years, 52.6 % males).

Results

There was a detectable increase (>5 ng/L) in post exercise hs-cTnT with exercise at HA which became significant at 5,150 m (5.84 % at 3,440 m, 5.2 % at 4,270 m and 56.3 % at 5,150 m; p = 0.0005). Compared with baseline, HA to 5,150 m led to a significant rise in post exercise Lake Louis AMS scores (p < 0.001) pulmonary artery systolic pressure (PASP) (23.7 ± 3.8 vs 37.9 ± 11.7 mmHg: p < 0.001), cardiac output (5.2 ± 1.2 vs 7.5 ± 1.3 l/min; p < 0.001) and a fall in SpO2 (96.1 ± vs 77.4 ± 12.0 %; p < 0.001). There was no change in stroke volume (p = 0.10) or estimated filling pressures (E/E’) of the left (p = 0.50) and right ventricles (p = 0.4). On multivariate analysis increasing cardiac output (p = 0.02) and PASP (p = 0.04) and decreasing SpO2 (p = 0.01) were the only independent predictors of increasing cTnT levels (overall R 2 = 0.23, p < 0.0001).

Conclusions

Moderate intensity exercise at significant HA influences the post exercise increase in hs-cTnT without overt deleterious effects on cardiac function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Twerenbold R, Jaffe A, Reichlin T, Reiter M, Mueller C (2012) High-sensitive troponin T measurements: what do we gain and what are the challenges? Eur Heart J 33:579–586

    Article  CAS  PubMed  Google Scholar 

  2. Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD (2012) Writing group on behalf of the joint ESC/ACCF/AHA/WHF task force for the universal definition of myocardial infarction. third universal definition of myocardial infarction. J Am Coll Cardiol 60:1581–1598

    Article  PubMed  Google Scholar 

  3. Shave R, George KP, Atkinson G, Hart E, Middleton N, Whyte G, Gaze D, Collinson PO (2007) Exercise-induced cardiac troponin T release: a meta-analysis. Med Sci Sports Exerc 39:2099–2106

    Article  CAS  PubMed  Google Scholar 

  4. Shave R, Baggish A, George K, Wood M, Scharhag J, Whyte G, Gaze D, Thompson PD (2010) Exercise-induced cardiac troponin elevation: evidence, mechanisms, and implications. J Am Coll Cardiol 56:169–176

    Article  CAS  PubMed  Google Scholar 

  5. George K, Whyte G, Stephenson C, Shave R, Dawson E, Edwards B, Gaze D, Collinson P (2004) Postexercise left ventricular function and cTnT in recreational marathon runners. Med Sci Sports Exerc 36:1709–1715

    Article  PubMed  Google Scholar 

  6. Shave RE, Whyte GP, George K, Gaze DC, Collinson PO (2005) Prolonged exercise should be considered alongside typical symptoms of acute myocardial infarction when evaluating increases in cardiac troponin T. Heart 91:1219–1220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Fu F, Nie J, Tong TK (2009) Serum cardiac troponin T in adolescent runners: effects of exercise intensity and duration. Int J Sports Med 30:168–172

    Article  CAS  PubMed  Google Scholar 

  8. Tian Y, Nie J, Huang C, George KP (2012) The kinetics of highly sensitive cardiac troponin T release after prolonged treadmill exercise in adolescent and adult athletes. J Appl Physiol 113:418–425

    Article  CAS  PubMed  Google Scholar 

  9. Middleton N, George K, Whyte G, Gaze D, Collinson P, Shave R (2008) Cardiac troponin T release is stimulated by endurance exercise in healthy humans. J Am Coll Cardiol 52:1813–1814

    Article  CAS  PubMed  Google Scholar 

  10. Eijsvogels T, George K, Shave R, Gaze D, Levine BD, Hopman MT et al (2010) Effect of prolonged walking on cardiac troponin levels. Am J Cardiol 105:267–272

    Article  CAS  PubMed  Google Scholar 

  11. Neilan TG, Januzzi JL, Lee-Lewandrowski E, Ton-Nu TT, Yoerger DM, Jassal DS et al (2006) Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation 114:2325–2333

    Article  PubMed  Google Scholar 

  12. Mehta R, Gaze D, Mohan S, Williams KL, Sprung V, George K et al (2012) Post-exercise cardiac troponin release is relation to exercise training history. Int J Sports Med 33:333–337

    Article  CAS  PubMed  Google Scholar 

  13. Allemann Y, Rotter M, Hutter D, Lipp E, Sartori C, Scherrer U et al (2004) Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am J Physiol Heart Circ Physiol 286:H856–H862

    Article  CAS  PubMed  Google Scholar 

  14. Mousavi N, Czarnecki A, Kumar K, Fallah-Rad N, Lytwyn M, Han SY et al (2009) Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol 103:1467–1472

    Article  PubMed  Google Scholar 

  15. George K, Shave R, Oxborough D, Cable T, Dawson E et al (2009) Left ventricular wall segment motion after ultra-endurance exercise in humans assessed by myocardial speckle tracking. Eur J Echocardiogr 10:238–243

    Article  PubMed  Google Scholar 

  16. Naeije R (2010) Physiological adaptation of the cardiovascular system to high altitude. Prog Cardiovasc Dis 52:456–466

    Article  PubMed  Google Scholar 

  17. Naeije R, Huez S, Lamotte M, Retailleau K, Neupane S, Abramowicz et al (2010) Pulmonary artery pressure limits exercise capacity at high altitude. Eur Respir J 36:1049–1055

    Article  CAS  PubMed  Google Scholar 

  18. Dávila-Román VG, Guest TM, Tuteur PG, Rowe WJ, Ladenson JH, Jaffe AS (1997) Transient right but not left ventricular dysfunction after strenuous exercise at high altitude. J Am Coll Cardiol 30:468–473

    Article  PubMed  Google Scholar 

  19. Shave RE, Dawson E, Whyte G, George K, Gaze D, Collinson P (2004) Effect of prolonged exercise in a hypoxic environment on cardiac function and cardiac troponin T. Br J Sports Med 38:86–88

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Banfi G, Lippi G, Susta D, Barassi A, D’Eril GM, Dogliotti G et al (2010) NT-proBNP concentrations in mountain marathoners. J Strength Cond Res 24:1369–1372

    Article  PubMed  Google Scholar 

  21. Ortega FB, Ruiz JR, Gutiérrez A, Castillo MJ (2006) Extreme mountain bike challenges may induce sub-clinical myocardial damage. J Sports Med Phys Fit 46:489–493

    CAS  Google Scholar 

  22. Serrano-Ostáriz E, Legaz-Arrese A, Terreros-Blanco JL, López-Ramón M, Cremades-Arroyos D, Carranza-García LE et al (2009) Cardiac biomarkers and exercise duration and intensity during a cycle-touring event. Clin J Sport Med 19:293–299

    Article  PubMed  Google Scholar 

  23. Woods DR, Begley J, Stacey M, Smith C, Boos CJ, Hooper T et al (2012) Severe acute mountain sickness, brain natriuretic peptide and NT-proBNP in humans. Acta Physiol Oxf 205:349–355

    Article  CAS  PubMed  Google Scholar 

  24. Apple FS, Jaffe AS (2012) Clinical implications of a recent adjustment to the high-sensitivity cardiac troponin T assay: user beware. Clin Chem 58:1599–1600

    Article  CAS  PubMed  Google Scholar 

  25. Hackett PH, Oelz O (1992) The Lake Louise consensus on the quantification of altitude illness. In: Sutton JR, Houston CS, Coates G (eds) Hypoxia and mountain medicine. Queen City Printers, Burlington, pp 327–330

    Google Scholar 

  26. Yock PG, Popp R (1984) Noninvasive estimation of right ventricular systolic pressure by Doppler ultrasound in patients with tricuspid regurgitation. Circulation 70:657–662

    Article  CAS  PubMed  Google Scholar 

  27. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Association of the European Society of Cardiology. Eur Heart J 28:2539–2550

    Article  PubMed  Google Scholar 

  28. Sade LE, Gulmez O, Eroglu S, Sezgin A, Muderrisoglu H (2007) Noninvasive estimation of right ventricular filling pressure by ratio of early tricuspid inflow to annular diastolic velocity in patients with and without recent cardiac surgery. J Am Soc Echocardiogr 20:982–988

    Article  PubMed  Google Scholar 

  29. Jurcut R, Giusca S, La Gerche A, Vasile S, Ginghina C, Voigt JU (2010) The echocardiographic assessment of the right ventricle: what to do in 2010? Eur J Echocardiogr 11:81–96

    Article  PubMed  Google Scholar 

  30. Boos CJ, Hodkinson P, Mellor A, Green NP, Woods DR (2012) The effects of acute hypobaric hypoxia on arterial stiffness and endothelial function and its relationship to changes in pulmonary artery pressure and left ventricular diastolic function. High Alt Med Biol 13:105–111

    Article  CAS  PubMed  Google Scholar 

  31. Boos CJ, Hodkinson PD, Mellor A, Green NP, Bradley D, Greaves K (2013) The effects of prolonged acute hypobaric hypoxia on novel measures of biventricular performance. Echocardiography 30:534–541

    Article  PubMed  Google Scholar 

  32. Mueller M, Celik S, Biener M, Vafaie M, Schwoebel K, Wollert KC, Januzzi JL, Katus HA, Giannitsis E (2012) Diagnostic and prognostic performance of a novel high-sensitivity cardiac troponin T assay compared to a contemporary sensitive cardiac troponin I assay in patients with acute coronary syndrome. Clin Res Cardiol 101:837–845

    Article  CAS  PubMed  Google Scholar 

  33. Gu YL, Voors AA, Zijlstra F, Hillege HL, Struck J, Masson S, Vago T, Anker SD, van den Heuvel AF, van Veldhuisen DJ, de Smet BJ (2011) Comparison of the temporal release pattern of copeptin with conventional biomarkers in acute myocardial infarction. Clin Res Cardiol 100:1069–1076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Bernheim AM, Kiencke S, Fischler M, Dorschner L, Debrunner J, Mairbäurl H et al (2007) Acute changes in pulmonary artery pressures due to exercise and exposure to high altitude do not cause left ventricular diastolic dysfunction. Chest 132:380–387

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Drummond Foundation, The Defence Medical Services and the Surgeon General’s Department for their support. The authors would also like to thank Sonosite®.

Conflict of interest

The authors have no conflicts of interest or financial ties to disclose. The Changes in BNP have been published on this cohort of patients before, however, all hs-cTnT and echocardiographic data are unpublished.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher John Boos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boos, C.J., Mellor, A., Begley, J. et al. The effects of exercise at high altitude on high-sensitivity cardiac troponin release and associated biventricular cardiac function. Clin Res Cardiol 103, 291–299 (2014). https://doi.org/10.1007/s00392-013-0654-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-013-0654-2

Keywords

Navigation