Skip to main content

Advertisement

Log in

Prevalence of different forms of infarct-atypical late gadolinium enhancement in patients early and late after heart transplantation

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Late gadolinium enhancement cardiac magnetic resonance (LGE-CMR) enables high-resolution myocardial tissue characterization, showing the results of different injuries, especially in the early period after heart transplantation (HTX).

Objectives

We sought to apply LGE-CMR to investigate the prevalence and patterns of infarct-atypical myocardial involvement and associated mechanisms in patients early and late after HTX.

Methods

LGE-CMR was performed on a 1.5-T MRI scanner (Philips, Best, the Netherlands) in 89 patients: group 1 (48 patients) less than 2.5 years after operation (1.2 ± 0.5 years) and group 2 (41 patients) later this period (8.2 ± 4.2 years). Following LGE-CMR, the presence, distribution, patterns of infarct-atypical LGE and possible associated mechanisms were assessed.

Results

71 % of group 1 patients (34/48) showed infarct-atypical LGE whereas 57 % of group 2 patients (22/41) were affected (p = 0.25). Fewer segments/patients were involved later after HTX (1.6 ± 2.0 vs. 2.9 ± 3.1 segments/patient; p = 0.03), but only diffuse LGE-CMR pattern decreased significantly (11.5 % of affected segments in group 1 vs. 6.5 % in group 2; p < 0.001). Group 2 had lower ischemic time (181 ± 53 vs. 208 ± 61 min; p = 0.03), the donors were younger (33 ± 13 vs. 41 ± 13 years; p = 0.01) and fewer donors were Toxoplasma gondii seropositive (4 vs. 22pts; p < 0.001).

Conclusion

Infarct-atypical LGE was found in a significant number of patients early post-HTX, however, fewer patients and myocardial segments per patient were affected later after HTX. Many potential factors seem to be involved, but the exact mechanisms are still unclear. Future studies are necessary to test prognostic implications associated with LGE-CMR patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ACR:

Acute cardiac rejection

CAV:

Cardiac allograft vasculopathy

CMR:

Cardiac magnetic resonance

EMB:

Endomyocardial biopsy

HTX:

Heart transplantation

LGE:

Late gadolinium enhancement

References

  1. Hunt SA, Haddad F (2008) The changing face of heart transplantation. J Am Coll Cardiol 52:587–598

    Article  PubMed  Google Scholar 

  2. Stehlik J, Edwards LB, Kuchervavava AY, Benden C, Christie JD, Dobbels F et al (2011) The Registry of the International Society for Heart and Lung Transplantation: twenty-eighth adult heart transplant report–2011. J Heart Lung Transplant 30:1078–1094

    Article  PubMed  Google Scholar 

  3. Estep JD, Shah DJ, Nagueh SF, Mahmarian JJ, Torre-Amione G, Zoghbi WA (2009) The role of multimodality cardiac imaging in the transplanted heart. JACC Cardiovasc Imaging 2:1126–1140

    Article  PubMed  Google Scholar 

  4. Jackson E, Bellenger N, Seddon M, Harden S, Peebles C (2007) Ischaemic and non-ischaemic cardiomyopathies— cardiac MRI appearances with delayed enhancement. Clin Radiol 62:395–403

    Article  CAS  PubMed  Google Scholar 

  5. Mahrholdt H, Wagner A, Judd RM, Sechtem U, Kim RJ (2005) Delayed enhancement cardiovascular magnetic resonance assessment of nonischaemic cardiomyopathies. Eur Heart J 26:1461–1474

    Article  PubMed  Google Scholar 

  6. Butler CR, Thompson R, Haykowsky M, Toma M, Paterson I (2009) Cardiovascular magnetic resonance in the diagnosis of acute heart transplant rejection: a review. J Cardiovasc Magn Reson 11:7

    Article  PubMed  Google Scholar 

  7. Marie PY, Angioi M, Carteaux JP, Escanye JM, Mattei S, Tzvetanov K et al (2001) Detection and prediction of acute heart transplant rejection with the myocardial T2 determination provided by a black-blood magnetic resonance imaging sequence. J Am Coll Cardiol 37:825–831

    Article  CAS  PubMed  Google Scholar 

  8. Almenar L, Igual B, Martinez-Dolz L, Arnau MA, Osa A, Rueda J et al (2003) Utility of cardiac magnetic resonance imaging for the diagnosis of heart transplant rejection. Transplant Proc 35:1962–1964

    Article  CAS  PubMed  Google Scholar 

  9. Taylor AJ, Vaddadi G, Pfluger H, Butler M, Bergin P, Leet A et al (2010) Diagnostic performance of multisequential cardiac magnetic resonance imaging in acute cardiac allograft rejection. Eur J Heart Fail 12:45–51

    Article  PubMed  Google Scholar 

  10. Steen H, Merten C, Refle S, Klingenberg R, Dengler T, Giannitsis E et al (2008) Prevalence of different gadolinium enhancement patterns in patients after heart transplantation. J Am Coll Cardiol 52:1160–1167

    Article  PubMed  Google Scholar 

  11. Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustees task force on standardized protocols. J Cardiovasc Magn Reson 10:35

    Article  PubMed  Google Scholar 

  12. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) American Heart Association Writing Group on Myocardial Segmentation and Registration for cardiac imaging standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542

    Article  PubMed  Google Scholar 

  13. Tan CD, Baldwin WM 3rd, Rodriguez ER (2007) Update on cardiac transplantation pathology. Arch Pathol Lab Med 131:1169–1191

    PubMed  Google Scholar 

  14. Stovin PG, English TA (1987) Effects of cyclosporine on the transplanted human heart. J Heart Transplant 6:180–185

    CAS  PubMed  Google Scholar 

  15. Tazelaar HD, Gay RE, Rowan RA, Billingham ME, Gay S (1990) Collagen profile in the transplanted heart. Hum Pathol 21:424–428

    Article  CAS  PubMed  Google Scholar 

  16. Friedrich MG, Strohm O, Schulz-Menger J, Marciniak H, Luft FC, Dietz R (1998) Contrast media-enhanced magnetic resonance imaging visualizes myocardial changes in the course of viral myocarditis. Circulation 97:1802–1809

    Article  CAS  PubMed  Google Scholar 

  17. Gallino A, Maggiorini M, Kiowski W, Martin X, Wunderli W, Schneider J et al (1996) Toxoplasmosis in heart transplant recipients. Eur J Clin Microbiol Infect Dis 15:389–393

    Article  CAS  PubMed  Google Scholar 

  18. Pickering JG, Boughner DR (1990) Fibrosis in the transplanted heart and its relation to donor ischemic time. Assessment with polarized light microscopy and digital image analysis. Circulation 81:949–958

    Article  CAS  PubMed  Google Scholar 

  19. Rowan RA, Billingham ME (1990) Pathologic changes in the long-term transplanted heart: a morphometric study of myocardial hypertrophy, vascularity, and fibrosis. Hum Pathol 21:767–772

    Article  CAS  PubMed  Google Scholar 

  20. Zemrak F, Petersen SE (2011) Late gadolinium enhancement CMR predicts adverse cardiovascular outcomes and mortality in patients with coronary artery disease: systematic review and meta-analysis. Prog Cardiovasc Dis 54:215–229

    Article  PubMed  Google Scholar 

  21. Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51:2414–2421

    Article  PubMed Central  PubMed  Google Scholar 

  22. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887

    Article  PubMed  Google Scholar 

  23. Fishman JA (2007) Infection in solid-organ transplant recipients. N Engl J Med 357:2601–2614

    Article  CAS  PubMed  Google Scholar 

  24. Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O et al (1999) Relationship of MRI delayed contrast-enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002

    Article  CAS  PubMed  Google Scholar 

  25. Saeed M, Wendland MF, Takehara Y, Higgins CB (1990) Reversible and irreversible injury in the reperfused myocardium: differentiation with contrast material-enhanced MR imaging. Radiology 175:633–637

    CAS  PubMed  Google Scholar 

  26. Mahrholdt H, Goedecke C, Wagner A, Meinhardt G, Athanasiadis A, Vogelsberg H et al (2004) Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation 109:1250–1258

    Article  PubMed  Google Scholar 

  27. Aretz HT, Billingham ME, Edwards WD, Factor SM, Fallon JT, Fenoglio JJ Jr et al (1987) Myocarditis: a histopathologic definition and classification. Am J Cardiovasc Pathol 1:3–14

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Steen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braggion-Santos, M.F., Andre, F., Lossnitzer, D. et al. Prevalence of different forms of infarct-atypical late gadolinium enhancement in patients early and late after heart transplantation. Clin Res Cardiol 103, 57–63 (2014). https://doi.org/10.1007/s00392-013-0623-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-013-0623-9

Keywords

Navigation