Skip to main content

Advertisement

Log in

Automated photoplethysmography-based determination of ankle-brachial index: a validation study against Doppler sonography

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Introduction

Determination of ankle-brachial-index (ABI) by manual Doppler is well established to screen for lower extremity arterial disease (LEAD) and to predict cardiovascular risk. A new generation of digital-controlled devices promises automated ABI determination. The aim of this study was to determine comparability of automated photoplethysmography (PPG)-derived ABI calculation with the Doppler-ABI algorithm commonly used in cohort studies.

Methods

Automated PPG-based ABI measurements [Vascular Explorer (VE) and Vicorder (VI)] were recorded from 112 limbs of healthy subjects and 22 limbs of patients with confirmed LEAD. Validity was evaluated on the basis of receiver-operating characteristic (ROC) analysis of clinical status and concordance with Doppler-ABI. Differences between cuff inflation [inf]- and deflation [def]-based method were studied in VE.

Results

PPG-based ABI values were higher compared to Doppler-ABI (VI +0.06, VEinf +0.15, VEdef +0.09, p < 0.001, respectively). The difference was pronounced in pathological (<0.9), borderline (0.9–0.99) and low normal (1.0–1.09) ABI, but less in ABI ≥1.1. However, ROC analysis revealed excellent diagnostic value for LEAD (sensitivity/specificity) and comparable area under the curve at method-adapted ABI thresholds for all methods: Doppler (95/90 %, 0.95), VI (75/96 %, 0.91), VEinf (85/89 %, 0.93) and VEdef (80/98 %, 0.94).

Conclusions

Digital-controlled PPG-based ABI determination is a useful diagnostic application for LEAD. However, the systematic higher ABI in PPG-based measurement compared to Doppler and remarkable differences between the deflationary and inflationary method are critical for the interpretation of borderline and low normal ABI values where precise reading is essential to detect mild LEAD and subclinical disease and to predict cardiovascular risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Ferket BS, Spronk S, Colkesen EB, Hunink MG (2012) Systematic review of guidelines on peripheral artery disease screening. Am J med 125(2):198–199. doi:10.1016/j.amjmed.2011.06.027

    Article  PubMed  Google Scholar 

  2. Heald CL, Fowkes FG, Murray GD, Price JF (2006) Risk of mortality and cardiovascular disease associated with the ankle-brachial index: systematic review. Atherosclerosis 189(1):61–69. doi:10.1016/j.atherosclerosis.2006.03.011

    Article  PubMed  CAS  Google Scholar 

  3. Zeymer U, Parhofer KG, Pittrow D, Binz C, Schwertfeger M, Limbourg T, Rother J (2009) Risk factor profile, management and prognosis of patients with peripheral arterial disease with or without coronary artery disease: results of the prospective German REACH registry cohort. Clin Res Cardiol Off J Ger Cardiac Soc 98(4):249–256. doi:10.1007/s00392-009-0754-1

    Google Scholar 

  4. Rastan A, Schwarzwalder U, Noory E, Taieb FH, Beschorner U, Sixt S, Burgelin K, Amantea P, Neumann FJ, Zeller T (2010) Primary use of sirolimus-eluting stents in the infrapopliteal arteries. J Endovasc Ther Off J Int Soc Endovasc Specialists 17(4):480–487. doi:10.1583/10-3073.1

    Article  Google Scholar 

  5. Kalsch HI, Eggebrecht H, Mayringer S, Konorza T, Sievers B, Sack S, Erbel R, Kroeger K (2008) Randomized comparison of effects of suture-based and collagen-based vascular closure devices on post-procedural leg perfusion. Clin Res Cardiol Off J Ger Cardiac Soc 97(1):43–48. doi:10.1007/s00392-007-0575-z

    CAS  Google Scholar 

  6. Zankl AR, Ivandic B, Andrassy M, Volz HC, Krumsdorf U, Blessing E, Katus HA, Tiefenbacher CP (2010) Telmisartan improves absolute walking distance and endothelial function in patients with peripheral artery disease. Clin Res Cardiol Off J Ger Cardiac Soc 99(12):787–794. doi:10.1007/s00392-010-0184-0

    CAS  Google Scholar 

  7. Rooke TW, Hirsch AT, Misra S, Sidawy AN, Beckman JA, Findeiss LK, Golzarian J, Gornik HL, Halperin JL, Jaff MR, Moneta GL, Olin JW, Stanley JC, White CJ, White JV, Zierler RE (2011) 2011 ACCF/AHA Focused Update of the Guideline for the Management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. J Am Coll Cardiol 58(19):2020–2045. doi:10.1016/j.jacc.2011.08.023

    Article  PubMed  Google Scholar 

  8. Tendera M, Aboyans V, Bartelink ML, Baumgartner I, Clement D, Collet JP, Cremonesi A, De Carlo M, Erbel R, Fowkes FG, Heras M, Kownator S, Minar E, Ostergren J, Poldermans D, Riambau V, Roffi M, Rother J, Sievert H, van Sambeek M, Zeller T, Bax J, Auricchio A, Baumgartner H, Ceconi C, Dean V, Deaton C, Fagard R, Funck-Brentano C, Hasdai D, Hoes A, Knuuti J, Kolh P, McDonagh T, Moulin C, Popescu B, Reiner Z, Sechtem U, Sirnes PA, Torbicki A, Vahanian A, Windecker S, Agewall S, Blinc A, Bulvas M, Cosentino F, De Backer T, Gottsater A, Gulba D, Guzik TJ, Jonsson B, Kesmarky G, Kitsiou A, Kuczmik W, Larsen ML, Madaric J, Mas JL, McMurray JJ, Micari A, Mosseri M, Muller C, Naylor R, Norrving B, Oto O, Pasierski T, Plouin PF, Ribichini F, Ricco JB, Ruilope L, Schmid JP, Schwehr U, Sol BG, Sprynger M, Tiefenbacher C, Tsioufis C, Van Damme H (2011) ESC Guidelines on the diagnosis and treatment of peripheral artery diseases: Document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J 32(22):2851–2906. doi:10.1093/eurheartj/ehr211

    Article  PubMed  Google Scholar 

  9. Jonsson B, Laurent C, Eneling M, Skau T, Lindberg LG (2005) Automatic ankle pressure measurements using PPG in ankle-brachial pressure index determination. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 30(4):395–401. doi:10.1016/j.ejvs.2005.05.012

    Article  CAS  Google Scholar 

  10. Beutner F, Teupser D, Gielen S, Holdt LM, Scholz M, Boudriot E, Schuler G, Thiery J (2011) Rationale and design of the Leipzig (LIFE) Heart Study: phenotyping and cardiovascular characteristics of patients with coronary artery disease. PLoS One 6(12):e29070. doi:10.1371/journal.pone.0029070

    Article  PubMed  CAS  Google Scholar 

  11. Barnhart HX, Haber M, Song J (2002) Overall concordance correlation coefficient for evaluating agreement among multiple observers. Biometrics 58(4):1020–1027

    Article  PubMed  Google Scholar 

  12. Efron B (1981) Nonparametric estimates of standard errors: the jackknife, the bootstrap and other methods. Biometrika 68(3):589–599

    Article  Google Scholar 

  13. Alpert BS (2011) Validation of the Welch Allyn SureBP (inflation) and StepBP (deflation) algorithms by AAMI standard testing and BHS data analysis. Blood Press Monit 16(2):96–98. doi:10.1097/MBP.0b013e328345232f

    Article  PubMed  Google Scholar 

  14. Khandanpour N, Armon MP, Jennings B, Clark A, Meyer FJ (2009) Photoplethysmography, an easy and accurate method for measuring ankle brachial pressure index: can photoplethysmography replace Doppler? Vasc Endovascular Surg 43(6):578–582. doi:10.1177/1538574409334829

    Article  PubMed  Google Scholar 

  15. Sadiq S, Chithriki M (2001) Arterial pressure measurements using infrared photosensors: comparison with CW Doppler. Clin Physiol 21(1):129–132

    Article  PubMed  CAS  Google Scholar 

  16. Diehm C, Lange S, Darius H, Pittrow D, von Stritzky B, Tepohl G, Haberl RL, Allenberg JR, Dasch B, Trampisch HJ (2006) Association of low ankle brachial index with high mortality in primary care. Eur Heart J 27(14):1743–1749. doi:10.1093/eurheartj/ehl092

    Article  PubMed  Google Scholar 

  17. McDermott MM, Guralnik JM, Tian L, Liu K, Ferrucci L, Liao Y, Sharma L, Criqui MH (2009) Associations of borderline and low normal ankle-brachial index values with functional decline at 5-year follow-up: the WALCS (Walking and Leg Circulation Study). J Am Coll Cardiol 53(12):1056–1062. doi:10.1016/j.jacc.2008.09.063

    Article  PubMed  Google Scholar 

  18. Korhonen PE, Seppala T, Kautiainen H, Jarvenpaa S, Aarnio PT, Kivela SL (2011) Ankle-brachial index and health-related quality of life. Eur J Cardiovasc Prev Rehabil Off J Eur Soc Cardiol, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology. doi:10.1177/1741826711420346

  19. Takahashi R, Imamura A, Yoshikane M, Suzuki M, Murakami R, Cheng XW, Numaguchi Y, Ikeda N, Murohara T, Okumura K (2011) High serum concentrations of pentosidine, an advanced glycation end product, are associated with low normal value of ankle-brachial index in apparently healthy men. Metab Clin Exp 60(5):649–654. doi:10.1016/j.metabol.2010.06.015

    Article  PubMed  CAS  Google Scholar 

  20. Jobbagy A (2004) Using the photoplathysmographic signal for increasing the accuracy of indirect blood pressure measurement. Proc Estonian Acad Sci Eng 10(2):110–122

    Google Scholar 

  21. Diehm C, Lawall H (2006) Diabetes, heart surgery and the peripheral arteries. Clin Res Cardiol Off J German Cardiac Soc 95(Suppl 1):i63–i69. doi:10.1007/s00392-006-1123-y

    Google Scholar 

  22. Meijer WT, Hoes AW, Rutgers D, Bots ML, Hofman A, Grobbee DE (1998) Peripheral arterial disease in the elderly: The Rotterdam study. Arterioscler Thromb Vasc Biol 18(2):185–192

    Article  PubMed  CAS  Google Scholar 

  23. Murabito JM, Guo CY, Fox CS, D’Agostino RB (2006) Heritability of the ankle-brachial index: the Framingham Offspring study. Am J Epidemiol 164(10):963–968. doi:10.1093/aje/kwj295

    Article  PubMed  Google Scholar 

  24. Newman AB, Shemanski L, Manolio TA, Cushman M, Mittelmark M, Polak JF, Powe NR, Siscovick D (1999) Ankle-arm index as a predictor of cardiovascular disease and mortality in the Cardiovascular Health Study. The Cardiovascular Health Study Group. Arterioscler Thromb Vasc Biol 19(3):538–545

    Article  PubMed  CAS  Google Scholar 

  25. Eldrup N, Sillesen H, Prescott E, Nordestgaard BG (2006) Ankle brachial index, C-reactive protein, and central augmentation index to identify individuals with severe atherosclerosis. Eur Heart J 27(3):316–322. doi:10.1093/eurheartj/ehi644

    Article  PubMed  CAS  Google Scholar 

  26. Lamina C, Meisinger C, Heid IM, Lowel H, Rantner B, Koenig W, Kronenberg F (2006) Association of ankle-brachial index and plaques in the carotid and femoral arteries with cardiovascular events and total mortality in a population-based study with 13 years of follow-up. Eur Heart J 27(21):2580–2587. doi:10.1093/eurheartj/ehl228

    Article  PubMed  Google Scholar 

  27. Weatherley BD, Nelson JJ, Heiss G, Chambless LE, Sharrett AR, Nieto FJ, Folsom AR, Rosamond WD (2007) The association of the ankle-brachial index with incident coronary heart disease: the Atherosclerosis Risk in Communities (ARIC) study, 1987–2001. BMC Cardiovasc Disord 7:3. doi:10.1186/1471-2261-7-3

    Article  PubMed  Google Scholar 

  28. Leng GC, Fowkes FG, Lee AJ, Dunbar J, Housley E, Ruckley CV (1996) Use of ankle brachial pressure index to predict cardiovascular events and death: a cohort study. BMJ 313(7070):1440–1444

    Article  PubMed  CAS  Google Scholar 

  29. Smith FB, Lee AJ, Price JF, van Wijk MC, Fowkes FG (2003) Changes in ankle brachial index in symptomatic and asymptomatic subjects in the general population. J Vasc Surg 38(6):1323–1330. doi:10.1016/S0741(Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter)

    Article  PubMed  Google Scholar 

  30. Tivesten A, Mellstrom D, Jutberger H, Fagerberg B, Lernfelt B, Orwoll E, Karlsson MK, Ljunggren O, Ohlsson C (2007) Low serum testosterone and high serum estradiol associate with lower extremity peripheral arterial disease in elderly men. The MrOS study in Sweden. J Am Coll Cardiol 50(11):1070–1076. doi:10.1016/j.jacc.2007.04.088

    Article  PubMed  CAS  Google Scholar 

  31. Wassel CL, Loomba R, Ix JH, Allison MA, Denenberg JO, Criqui MH (2011) Family history of peripheral artery disease is associated with prevalence and severity of peripheral artery disease: the San Diego Population Study. J Am Coll Cardiol 58(13):1386–1392. doi:10.1016/j.jacc.2011.06.023

    Article  PubMed  CAS  Google Scholar 

  32. Schroder F, Diehm N, Kareem S, Ames M, Pira A, Zwettler U, Lawall H, Diehm C (2006) A modified calculation of ankle-brachial pressure index is far more sensitive in the detection of peripheral arterial disease. J Vasc Surg 44(3):531–536. doi:10.1016/j.jvs.2006.05.016 (Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter)

    Article  PubMed  Google Scholar 

  33. Espinola-Klein C, Rupprecht HJ, Bickel C, Lackner K, Savvidis S, Messow CM, Munzel T, Blankenberg S (2008) Different calculations of ankle-brachial index and their impact on cardiovascular risk prediction. Circulation 118(9):961–967. doi:10.1161/CIRCULATIONAHA.107.763227

    Article  PubMed  Google Scholar 

  34. Niazi K, Khan TH, Easley KA (2006) Diagnostic utility of the two methods of ankle brachial index in the detection of peripheral arterial disease of lower extremities. Catheter Cardiovasc Interv Off J Soc Cardiac Angiogr Interv 68(5):788–792. doi:10.1002/ccd.20906

    Article  Google Scholar 

  35. Allison MA, Aboyans V, Granston T, McDermott MM, Kamineni A, Ni H, Criqui MH (2010) The relevance of different methods of calculating the ankle-brachial index: the multi-ethnic study of atherosclerosis. Am J Epidemiol 171(3):368–376. doi:10.1093/aje/kwp382

    Article  PubMed  Google Scholar 

  36. Johansson K, Behre CJ, Bergstrom G, Schmidt C (2010) Ankle-brachial index should be measured in both the posterior and the anterior tibial arteries in studies of peripheral arterial disease. Angiology 61(8):780–783. doi:10.1177/0003319710366126

    Article  PubMed  Google Scholar 

  37. Lange SF, Trampisch HJ, Pittrow D, Darius H, Mahn M, Allenberg JR, Tepohl G, Haberl RL, Diehm C (2007) Profound influence of different methods for determination of the ankle brachial index on the prevalence estimate of peripheral arterial disease. BMC Public Health 7:147

    Article  PubMed  Google Scholar 

  38. Criqui MH, Fronek A, Klauber MR, Barrett-Connor E, Gabriel S (1985) The sensitivity, specificity, and predictive value of traditional clinical evaluation of peripheral arterial disease: results from noninvasive testing in a defined population. Circulation 71(3):516–522

    Article  PubMed  CAS  Google Scholar 

  39. Yamada T, Gloviczki P, Bower TC, Naessens JM, Carmichael SW (1993) Variations of the arterial anatomy of the foot. Am J Surg 166(2):130–135 (discussion 135)

    Article  PubMed  CAS  Google Scholar 

  40. Aboyans V, Lacroix P (2007) Regarding: “A modified calculation of ankle-brachial pressure index is far more sensitive in the detection of peripheral arterial disease”. J vasc surg 46 (3):617–618) (Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter, author reply 618–619) doi:10.1016/j.jvs.2006.09.072

  41. Hasanadka R, Brown KR, Rilling WS, Rossi PJ, Hieb RA, Hohenwalter EJ, Seabrook GR, Lewis BD, Towne JB (2008) The extent of lower extremity occlusive disease predicts short- and long-term patency following endovascular infrainguinal arterial intervention. Am J Surg 196(5):629–633. doi:10.1016/j.amjsurg.2008.07.010

    Article  PubMed  Google Scholar 

  42. Roberts AJ, Roberts EB, Sykes K, De Cossart L, Edwards P, Cotterrell D (2008) Physiological and functional impact of an unsupervised but supported exercise programme for claudicants. Eur J Vasc Endovasc Surg Off J Eur Soc Vasc Surg 36(3):319–324. doi:10.1016/j.ejvs.2008.04.008

    Article  CAS  Google Scholar 

  43. Nylaende M, Kroese AJ, Morken B, Stranden E, Sandbaek G, Lindahl AK, Arnesen H, Seljeflot I (2007) Beneficial effects of 1-year optimal medical treatment with and without additional PTA on inflammatory markers of atherosclerosis in patients with PAD. Results from the Oslo Balloon Angioplasty versus Conservative Treatment (OBACT) study. Vasc Med 12(4):275–283. doi:10.1177/1358863X07082720

    Article  PubMed  CAS  Google Scholar 

  44. Money SR, Herd JA, Isaacsohn JL, Davidson M, Cutler B, Heckman J, Forbes WP (1998) Effect of cilostazol on walking distances in patients with intermittent claudication caused by peripheral vascular disease. J Vasc Surg 27(2):267–274 (Official publication, the Society for Vascular Surgery [and] International Society for Cardiovascular Surgery, North American Chapter, discussion 274–265)

    Article  PubMed  CAS  Google Scholar 

  45. Faglia E, Mantero M, Caminiti M, Caravaggi C, De Giglio R, Pritelli C, Clerici G, Fratino P, De Cata P, Dalla Paola L, Mariani G, Poli M, Settembrini PG, Sciangula L, Morabito A, Graziani L (2002) Extensive use of peripheral angioplasty, particularly infrapopliteal, in the treatment of ischaemic diabetic foot ulcers: clinical results of a multicentric study of 221 consecutive diabetic subjects. J Intern Med 252(3):225–232

    Article  PubMed  CAS  Google Scholar 

  46. Dachun X, Jue L, Liling Z, Yawei X, Dayi H, Pagoto SL, Yunsheng M (2010) Sensitivity and specificity of the ankle-brachial index to diagnose peripheral artery disease: a structured review. Vasc Med 15(5):361–369. doi:10.1177/1358863X10378376

    Article  Google Scholar 

Download references

Acknowledgments

We thank Heike Bauch, Constanze Langheinrich and Kay Olischer for their technical assistance. This publication is supported by LIFE—Leipzig Research Center for Civilization Diseases, University Leipzig. LIFE is funded by the European Union, by the European Regional Development Fund (ERDF), and by the Free State of Saxony within the framework of the excellence initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Beutner.

Additional information

F. Beutner and A. Teren contributed equally.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 351 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beutner, F., Teren, A., Gielen, S. et al. Automated photoplethysmography-based determination of ankle-brachial index: a validation study against Doppler sonography. Clin Res Cardiol 101, 875–883 (2012). https://doi.org/10.1007/s00392-012-0471-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-012-0471-z

Keywords

Navigation