Skip to main content
Log in

Longitudinal heterogeneity of coronary artery distensibility in plaques related to acute coronary syndrome

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

How coronary distensibility contributes to stable or unstable clinical manifestations remains obscure. We postulated that the heterogeneous plaque distensibility is associated with unstable clinical presentations in patients with acute coronary syndrome (ACS).

Methods and results

Seventeen and 19 ACS-related and -unrelated lesions, respectively, were visualized using intravascular ultrasound imaging with simultaneous intracoronary pressure recording. Systolic and diastolic lumen cross-sectional areas were measured at the lesion site and at five evenly spaced sites between the proximal and distal reference sites. The coronary distensibility index and stiffness index β were calculated for each site and averaged for each coronary segment. Maximal distensibility index, standard deviation and the difference between maximal and minimal distensibility indices within each segment were significantly higher in the ACS-related than -unrelated plaques (5.6 ± 2.3 vs. 3.7 ± 1.8, p < 0.001, 2.1 ± 0.9 vs. 1.1 ± 0.6, p < 0.001 and 5.3 ± 2.3 vs. 2.8 ± 1.5, p < 0.001, respectively). Moreover, the difference in the distensibility index between the lesion site of ACS-related plaques and the immediate proximal site was significantly larger (2.88 ± 2.35 vs. 1.17 ± 1.44, p = 0.022) than that in ACS-unrelated plaques.

Conclusions

Coronary artery distensibility is longitudinally more heterogeneous in ACS-related than-unrelated plaques, especially between the lesion and the immediate proximal site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lee RT, Libby P (1997) The unstable atheroma. Arterioscler Thromb Vasc Biol 17:1859–1867

    Article  PubMed  CAS  Google Scholar 

  2. Falk E (1999) Stable versus unstable atherosclerosis: clinical aspects. Am Heart J 138:s421–s425

    Article  PubMed  CAS  Google Scholar 

  3. Richardson PD, Davies MJ, Born GV (1989) Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2:941–944

    Article  PubMed  CAS  Google Scholar 

  4. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101:598–603

    Article  PubMed  CAS  Google Scholar 

  5. Varnava AM, Millis PG, Davies MJ (2002) Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105:939–943

    Article  PubMed  Google Scholar 

  6. Fujii K, Kobayashi Y, Mintz GS, Takebayashi H, Dangas G, Moussa I, Mehran R, Lansky AJ, Kreps E, Collins M, Colombo A, Stone GW, Leon MB, Moses JW (2003) Intravascular ultrasound assessment of ulcerated ruptured plaques: a comparison of culprit and nonculprit lesions of patients with acute coronary syndromes and lesions in patients without acute coronary syndromes. Circulation 108:2473–2478

    Article  PubMed  Google Scholar 

  7. Ji Kotani, Mintz GS, Castagna MT, Pinnow E, Berzingi CO, Bui AB, Pichard AD, Satler LF, Suddath WO, Waksman R, Laird JR, Kent KM, Weissman NJ (2003) Intravascular ultrasound analysis of infarct-related and non-infarct-related arteries in patients who presented with an acute myocardial infarction. Circulation 107:2889–2893

    Article  Google Scholar 

  8. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S (2001) Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 21:1618–1622

    Article  PubMed  CAS  Google Scholar 

  9. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y, Fukuda D, Nakamura Y, Yamashita H, Yamagishi H, Takeuchi K, Naruko T, Haze K, Becker AE, Yoshikawa J, Ueda M (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429

    Article  PubMed  Google Scholar 

  10. Fujii K, Carlier S, Mintz GS, Takebayashi H, Yasuda T, Costa RA, Moussa I, Dangas G, Mehran R, Lansky AJ, Kreps EM, Collins M, Stone GW, Moses JW, Leon MB (2005) Intravascular ultrasound study of patterns of calcium in ruptured coronary plaques. Am J Cardiol 96:352–357

    Article  PubMed  CAS  Google Scholar 

  11. Yamagishi M, Terashima M, Awano K, Kijima M, Nakatani S, Daikoku S, Ito K, Yasumura Y, Miyatake K (2000) Morphology of vulnerable coronary plaque: insights from follow-up of patients examined by intravascular ultrasound before an acute coronary syndrome. J Am Coll Cardiol 35:106–111

    Article  PubMed  CAS  Google Scholar 

  12. DeMaria AN, Narula J, Mahmud E, Tsimikas S (2006) Imaging vulnerable plaque by ultrasound. J Am Coll Cardiol 47:C32–C39

    Article  PubMed  Google Scholar 

  13. Ehara S, Kobayashi Y, Yoshiyama M, Ueda M, Yoshikawa J (2006) Coronary artery calcification revised. J Atheroscler Thromb 13:31–37

    Article  PubMed  Google Scholar 

  14. Jeremias A, Spies C, Herity NA, Pomerantsev E, Yock PG, Fitzgerald PJ, Yeung AC (2000) Coronary artery compliance and adaptive vessel remodeling in patients with stable and unstable coronary artery disease. Heart 84:314–319

    Article  PubMed  CAS  Google Scholar 

  15. Takano M, Mizuno K, Okamatsu K, Yokoyama S, Ohba T, Sakai S (2001) Mechanical and structural characteristics of vulnerable plaques, analysis by coronary angioscopy and intravascular ultrasound. J Am Coll Cardiol 38:99–104

    Article  PubMed  CAS  Google Scholar 

  16. Alfonso F, Macaya C, Goicolea J, Hernandez R, Segovia J, Zamorano J, Banuelos C, Zarco P (1994) Determinants of coronary compliance in patients with coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 23:879–884

    Article  PubMed  CAS  Google Scholar 

  17. Reddy KG, Suneja R, Nair RN, Dhawale P, Hodgson JM (1993) Measurement by intracoronary ultrasound of in vivo arterial distensibility within atherosclerotic lesions. Am J Cardiol 72:1232–1237

    Article  PubMed  CAS  Google Scholar 

  18. Vavuranakis M, Stefanadis C, Triandaphyllidi E, Toutouzas K, Toutouzas P (1999) Coronary artery distensibility in diabetic patients with simultaneous measurements of luminal area and intracoronary pressure: evidence of impaired reactivity to nitroglycerin. J Am Coll Cardiol 34:1075–1081

    Article  PubMed  CAS  Google Scholar 

  19. Umeno T, Yamagishi M, Tsutsui H, Hongo Y, Uematsu M, Nakatani S, Yasumura Y, Komamura K, Sasaki T, Miyatake K (1997) Intravascular ultrasound evidence for importance of plaque distribution in the determination of regional vessel wall compliance. Heart Vessels Suppl 12:182–184

    Google Scholar 

  20. McLeod AL, Newby DE, Northridge DB, Fox KAA, Uren NG (2003) Influence of differential vascular remodeling on the coronary vasomotor response. Cardiovasc Res 59:520–526

    Article  PubMed  CAS  Google Scholar 

  21. Nakatani S, Yamagishi M, Tamai J, Goto Y, Umeno T, Kawaguchi A, Yutani C, Miyatake K (1995) Assessment of coronary artery distensibility by intravascular ultrasound. Application of simultaneous measurements of luminal area and pressure. Circulation 91:2904–2910

    Article  PubMed  CAS  Google Scholar 

  22. Yamagishi M, Umeno T, Hongo Y, Tsutsui H, Goto Y, Nakatani S, Miyatake K (1997) Intravascular ultrasonic evidence for importance of plaque distribution (eccentric vs. circumferential) in determining distensibility of the left anterior descending artery. Am J Cardiol 79:1596–1600

    Article  PubMed  CAS  Google Scholar 

  23. Hirai T, Sasayama S, Kawasaki T, Yagi S (1989) Stiffness of systemic arteries in patients with myocardial infarction: a non-invasive method to predict severity of coronary atherosclerosis. Circulation 80:78–86

    Article  PubMed  CAS  Google Scholar 

  24. Loree HM, Kamm RD, Stringfellow RG, Lee RT (1992) Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ Res 71:850–858

    Article  PubMed  CAS  Google Scholar 

  25. Cheng GC, Loree HM, Kamm RD, Fishbein MC, Lee RT (1993) Distribution of circumferential stress in ruptured and stable atherosclerotic lesions: a structural analysis with histopathological correlation. Circulation 87:1179–1187

    Article  PubMed  CAS  Google Scholar 

  26. Schaar JA, De Korte CL, Mastik F, Strijder C, Pasterkamp G, Boersma E, Serruys PW, van der Steen AFW (2003) Characterizing vulnerable plaque features with intravascular elastography. Circulation 108:2636–2641

    Article  PubMed  Google Scholar 

  27. Schaar JA, van der Steen AF, Mastik F, Baldewsing RA, Serruys PW (2006) Intravascular palpography for vulnerable plaque assessment. J Am Coll Cardiol 47(8 Suppl):C86–C91

    Article  PubMed  Google Scholar 

  28. Dirksen MT, van der Wal AC, van den Berg FM, van der Loos CM, Becker AE (1998) Distribution of inflammatory cells in atherosclerotic plaques relates to the direction of flow. Circulation 98:2000–2003

    Article  PubMed  CAS  Google Scholar 

  29. Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M (2008) Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in vivo color mapping of shear stress distribution. J Am Coll Cardiol 51:645–650

    Article  PubMed  Google Scholar 

  30. König A, Bleie Ø, Rieber J, Jung P, Schiele TM, Sohn HY, Leibig M, Siebert U, Klauss V (2010) Intravascular ultrasound radiofrequency analysis of the lesion segment profile in ACS patients. Clin Res Cardiol 99:83–91

    Article  PubMed  Google Scholar 

  31. Li ZY, Howarth SP, Tang T, Gillard JH (2006) How critical is fibrous cap thickness to carotid plaque stability? A flow-plaque interaction model. Stroke 37:1195–1199

    Article  PubMed  Google Scholar 

  32. Li ZY, Gillard JH (2008) Plaque rupture: plaque stress, shear stress, and pressure drop. (Letter). J Am Coll Cardiol 52:499–500

    Article  PubMed  Google Scholar 

  33. Imoto K, Hiro T, Fujii T, Murashige A, Fukumoto Y, Hashimoto G, Okamura T, Yamada J, Mori K, Matsuzaki M (2005) Longitudinal structural determinants of atherosclerotic plaque vulnerability: a computational analysis of stress distribution using vessel models and three-dimensional intravascular ultrasound imaging. J Am Coll Cardiol 46:1507–1515

    Article  PubMed  Google Scholar 

  34. Gijsen FJ, Wentzel JJ, Thury A, Mastik F, Schaar JA, Schuurbiers JC, Slager CJ, van der Giessen WJ, de Feyter PJ, van der Steen AFW, Serruys PW (2008) Strain distribution over plaques in human coronary arteries relates to shear stress. Am J Physiol Heart Circ Physiol 295:H1608–H1614

    Article  PubMed  CAS  Google Scholar 

  35. Céspedes EI, de Korte CL, van der Steen AFW (2000) Intraluminal ultrasonic palpation: assessment of local and cross sectional tissue stiffness. Ultrasound Med Biol 26:385–396

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported in part by a research grant from the Japan Foundation of Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiko Nishioka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sasaki, O., Nishioka, T., Inoue, Y. et al. Longitudinal heterogeneity of coronary artery distensibility in plaques related to acute coronary syndrome. Clin Res Cardiol 101, 545–551 (2012). https://doi.org/10.1007/s00392-012-0424-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-012-0424-6

Keywords

Navigation