Skip to main content
Log in

Transforming growth factor beta 1 (TGF-beta 1) in atrial fibrillation and acute congestive heart failure

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Purpose

Atrial fibrillation (AF) and acute congestive heart failure (aCHF) are characterized by an adverse cardiac remodeling. Arrhythmogenic or structural remodeling can be caused by interstitial fibrosis. Transforming growth factor beta 1 (TGF-beta 1) represents a central regulator of cardiac fibrosis. This study investigates serum levels of TGF-beta 1 in patients with AF and aCHF.

Methods

401 patients presenting with symptoms of dyspnea or peripheral edema were prospectively enrolled. Blood samples for measurement of TGF-beta 1 (R&D Systems, Inc.) and amino-terminal pro-brain natriuretic peptide (NT-proBNP) (DadeBehring ltd.) were collected after the initial clinical evaluation.

Results

Median TGF-beta 1 levels were lower in patients with AF (21.0 ng/ml, interquartile range (IR) 15.4–27.6 ng/ml, n = 107) compared to those without (25.0 ng/ml, IR 18.5–31.6 ng/ml, n = 294) (p = 0.009). Patients with aCHF had lower TGF-beta 1 levels (median 22.0 ng/ml, IR 15.6–27.1 ng/ml, n = 122) than those without (median 24.9 ng/ml, IR 18.1–31.9 ng/ml, n = 279) (p = 0.0005). In logistic regression models TGF-beta 1 was still associated with AF (odds ratio (OR) 3.00, 95% CI 1.37–6.61, p = 0.0001) and aCHF (OR 3.98, 95% CI 1.55–10.19, p = 0.004). TGF-beta 1 inversely correlated with left atrial diameter (r = −0.30, p = 0.007) and NT-proBNP (r = −0.14, p = 0.007).

Conclusions

Low serum levels of TGF-beta 1 are associated with AF and aCHF. This decrease may result from a higher consumption of TGF-beta 1 within the impaired myocardium or antifibrotic functions of natriuretic peptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kirchhof P, Bax J, Blomstrom-Lundquist C et al (2009) Early and comprehensive management of atrial fibrillation: proceedings from the 2nd AFNET/EHRA consensus conference on atrial fibrillation entitled ‘research perspectives in atrial fibrillation’. Europace 11:860–885

    Article  PubMed  Google Scholar 

  2. Horlitz M, Schley P, Shin DI et al (2008) Atrial tachycardias following circumferential pulmonary vein ablation: observations during catheter ablation. Clin Res Cardiol 97:124–130

    Article  PubMed  Google Scholar 

  3. Nitardy A, Langreck H, Dietz R et al (2009) Reduction of right ventricular pacing in patients with sinus node dysfunction through programming a long atrioventricular delay along with the DDIR mode. Clin Res Cardiol 98:25–32

    Article  PubMed  Google Scholar 

  4. Hauck M, Bauer A, Voss F et al (2009) Effect of cardiac resynchronization therapy on conversion of persistent atrial fibrillation to sinus rhythm. Clin Res Cardiol 98:189–194

    Article  PubMed  Google Scholar 

  5. Tebbe U, Oeckinghaus R, Appel KF et al (2008) AFFECT: a prospective, open-label, multicenter trial to evaluate the feasibility and safety of a short-term treatment with subcutaneous certoparin in patients with persistent non-valvular atrial fibrillation. Clin Res Cardiol 97:389–396

    Article  PubMed  CAS  Google Scholar 

  6. Watson T, Shantsila E, Lip GY (2009) Mechanisms of thrombogenesis in atrial fibrillation: Virchow’s triad revisited. Lancet 373:155–166

    Article  PubMed  CAS  Google Scholar 

  7. Opie LH, Commerford PJ, Gersh BJ et al (2006) Controversies in ventricular remodelling. Lancet 367:356–367

    Article  PubMed  Google Scholar 

  8. Dickstein K, Cohen-Solal A, Filippatos G et al (2008) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2008: the task force for the diagnosis and treatment of acute and chronic heart failure 2008 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association of the ESC (HFA) and endorsed by the European Society of Intensive Care Medicine (ESICM). Eur Heart J 29:2388–2442

    Google Scholar 

  9. Dagli N, Karaca I, Yavuzkir M et al (2008) Are maximum P wave duration and P wave dispersion a marker of target organ damage in the hypertensive population? Clin Res Cardiol 97:98–104

    Article  PubMed  Google Scholar 

  10. Plisiene J, Blumberg A, Haager G et al (2008) Moderate physical exercise: a simplified approach for ventricular rate control in older patients with atrial fibrillation. Clin Res Cardiol 97:820–826

    Article  PubMed  CAS  Google Scholar 

  11. Towbin JA (2007) Scarring in the heart—a reversible phenomenon? N Engl J Med 357:1767–1768

    Article  PubMed  CAS  Google Scholar 

  12. Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  PubMed  CAS  Google Scholar 

  13. Akinci B, Bayraktar F, Saklamaz A et al (2007) Low transforming growth factor-beta1 serum levels in idiopathic male osteoporosis. J Endocrinol Invest 30:350–355

    PubMed  CAS  Google Scholar 

  14. Stefoni S, Cianciolo G, Donati G et al (2002) Low TGF-beta1 serum levels are a risk factor for atherosclerosis disease in ESRD patients. Kidney Int 61:324–335

    Article  PubMed  CAS  Google Scholar 

  15. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    PubMed  CAS  Google Scholar 

  16. Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118:10–24

    Article  PubMed  CAS  Google Scholar 

  17. Clarke DC, Liu X (2008) Decoding the quantitative nature of TGF-beta/Smad signaling. Trends Cell Biol 18:430–442

    Article  PubMed  CAS  Google Scholar 

  18. Weber KT (1997) Extracellular matrix remodeling in heart failure: a role for de novo angiotensin II generation. Circulation 96:4065–4082

    PubMed  CAS  Google Scholar 

  19. Behnes M, Brueckmann M, Ahmad-Nejad P et al (2009) Diagnostic performance and cost effectiveness of measurements of plasma N-terminal pro brain natriuretic peptide in patients presenting with acute dyspnea or peripheral edema. Int J Cardiol 135:165–174

    Article  PubMed  Google Scholar 

  20. Behnes M, Lang S, Breithardt OA et al (2008) Association of NT-proBNP with severity of heart valve disease in a medical patient population presenting with acute dyspnea or peripheral edema. J Heart Valve Dis 17:557–565

    PubMed  Google Scholar 

  21. Camm AJ, Kirchhof P, Lip GY et al (2010) Guidelines for the management of atrial fibrillation: the task force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Eur Heart J 31:2369–2429

    Google Scholar 

  22. Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148:839–843

    PubMed  CAS  Google Scholar 

  23. Corda S, Samuel JL, Rappaport L (2000) Extracellular matrix and growth factors during heart growth. Heart Fail Rev 5:119–130

    Article  PubMed  CAS  Google Scholar 

  24. Leask A (2007) TGFbeta, cardiac fibroblasts, and the fibrotic response. Cardiovasc Res 74:207–212

    Article  PubMed  CAS  Google Scholar 

  25. Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13:952–961

    Article  PubMed  CAS  Google Scholar 

  26. Xiao H, Zhang YY (2008) Understanding the role of transforming growth factor-beta signalling in the heart: overview of studies using genetic mouse models. Clin Exp Pharmacol Physiol 35:335–341

    Article  PubMed  CAS  Google Scholar 

  27. Everett THt, Olgin JE (2007) Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 4:S24–S27

    Article  PubMed  Google Scholar 

  28. Li X, Ma C, Dong J et al (2008) The fibrosis and atrial fibrillation: is the transforming growth factor-beta(1) a candidate etiology of atrial fibrillation. Med Hypotheses 70:317–319

    Article  PubMed  CAS  Google Scholar 

  29. Lim H, Zhu YZ (2006) Role of transforming growth factor-beta in the progression of heart failure. Cell Mol Life Sci 63:2584–2596

    Article  PubMed  CAS  Google Scholar 

  30. MacLellan WR (2000) Advances in the molecular mechanisms of heart failure. Curr Opin Cardiol 15:128–135

    Article  PubMed  CAS  Google Scholar 

  31. Xu J, Cui G, Esmailian F et al (2004) Atrial extracellular matrix remodeling and the maintenance of atrial fibrillation. Circulation 109:363–368

    Article  PubMed  CAS  Google Scholar 

  32. Lin CS, Pan CH (2008) Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation. Cell Mol Life Sci 65:1489–1508

    Article  PubMed  CAS  Google Scholar 

  33. Du J, Xie J, Zhang Z et al (2010) TRPM7-mediated Ca2+ signals confer fibrogenesis in human atrial fibrillation. Circ Res 106:992–1003

    Google Scholar 

  34. Nishikimi T, Maeda N, Matsuoka H (2006) The role of natriuretic peptides in cardioprotection. Cardiovasc Res 69:318–328

    Article  PubMed  CAS  Google Scholar 

  35. Ogawa Y, Tamura N, Chusho H et al (2001) Brain natriuretic peptide appears to act locally as an antifibrotic factor in the heart. Can J Physiol Pharmacol 79:723–729

    Article  PubMed  CAS  Google Scholar 

  36. Letsas KP, Filippatos GS, Pappas LK et al (2009) Determinants of plasma NT-pro-BNP levels in patients with atrial fibrillation and preserved left ventricular ejection fraction. Clin Res Cardiol 98:101–106

    Article  PubMed  CAS  Google Scholar 

  37. Li P, Wang D, Lucas J et al (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102:185–192

    Article  PubMed  CAS  Google Scholar 

  38. Quantikine®, Human TGFbeta 1 Immunoassay,©2008. R&D Systems Inc., Minneapolis; Available at: http://www.rndsystems.com/pdf/DB100B.pdf

  39. Dobrev D (2010) Atrial Ca2+ signaling in atrial fibrillation as an antiarrhythmic drug target. Naunyn Schmiedebergs Arch Pharmacol 381:195–206

    Article  PubMed  CAS  Google Scholar 

  40. Dobrev D,Nattel S (2008) Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J Cardiovasc Pharmacol 52:293–299

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Behnes.

Additional information

M. Behnes and U. Hoffmann contributed equally to this study.

M. Brueckmann is an employee of Boehringer Ingelheim GmbH and a lecturer of the Medical Faculty of Mannheim, University of Heidelberg, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behnes, M., Hoffmann, U., Lang, S. et al. Transforming growth factor beta 1 (TGF-beta 1) in atrial fibrillation and acute congestive heart failure. Clin Res Cardiol 100, 335–342 (2011). https://doi.org/10.1007/s00392-010-0248-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-010-0248-1

Keywords

Navigation