Skip to main content
Log in

Association of exercise capacity and the heart rate profile during exercise stress testing with subclinical coronary atherosclerosis: data from the Heinz Nixdorf Recall study

  • Original Paper
  • Published:
Clinical Research in Cardiology Aims and scope Submit manuscript

Abstract

Background

Exercise capacity and heart rate profile parameters obtained from exercise stress testing as well as the subclinical coronary atherosclerosis burden from cardiac CT have been suggested to improve cardiovascular (CV) risk stratification beyond traditional risk factors (RF) in persons at risk of CV events.

Aim

To study the association of exercise stress-test variables with the coronary artery calcium (CAC) burden in relation to age, sex and traditional RF in subjects without known coronary artery disease from the general population.

Methods

In 3,163 subjects, CV and RF were measured, a bicycle stress test was performed and the electron beam CT-based CAC-Agatston score was quantified.

Results

Exercise capacity, chronotropic response and an abnormal HR recovery were significantly and inversely related to CAC scores in men and women in univariate unadjusted analysis. This association was diminished after adjustment for age and sex and further after adjustment for traditional risk factors. In multivariate analysis, chronotropic response in men [estimate (95% CI): 0.94 (0.91–0.97), P = 0.0005] and an abnormal HR recovery (<15 bpm after 1 min) in women [estimate: 1.34 (1.07–1.70), P = 0.013] but not exercise capacity remained associated with CAC independent of traditional RF. In subjects not taking lipid-lowering, antiarrhythmic or antihypertensive drugs, estimates for the observed associations were essentially unchanged. The clinical ability of these variables to predict a high CAC score was limited.

Conclusion

The strong inverse association of exercise capacity, chronotropic response and abnormal HR recovery during exercise stress testing with the CAC burden in unadjusted univariate analysis is largely influenced by age, sex and cardiovascular RFs. The degree, to which exercise stress-test variables and the CAC burden independently contribute to the prediction of cardiovascular events, remains to be shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Pasternak RC, Abrams J, Greenland P, Smaha LA, Wilson PWF, Houston-Miller N (2003) Task force #1—identification of coronary heart disease risk: is there a detection gap? J Am Coll Cardiol 41(11):1863–1874

    Article  PubMed  Google Scholar 

  2. Smith SC Jr, Greenland P, Grundy SM (2000) AHA conference proceedings. Prevention conference V: Beyond secondary prevention: identifying the high-risk patient for primary prevention: executive summary. Circulation 101(1):111–116

    PubMed  Google Scholar 

  3. Greenland P, Bonow RO, Brundage BH et al (2007) ACCF/AHA 2007 clinical expert consensus document on CAC scoring by CT in global cardiovascular risk assessment and in evaluation of patients with chest pain: a report of the ACC Foundation Clinical Expert Consensus Task Force. Circulation 115:402–426

    Article  PubMed  Google Scholar 

  4. Detrano R, Guerci AD, Carr JJ et al (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345

    Article  PubMed  CAS  Google Scholar 

  5. Lauer MS, Francis GS, Okin PM et al (1999) Impaired chronotropic response to exercise stress testing as a predictor of mortality. JAMA 281:524–529

    Article  PubMed  CAS  Google Scholar 

  6. Azarbal B, Hayes SW, Lewin HC, Hachamovitch R, Cohen I, Berman DS (2004) The incremental prognostic value of percentage of HR reserve achieved over myocardial perfusion SPECT in the prediction of cardiac death and all-cause mortality: superiority over 85% of maximal age-predicted heart rate. J Am Coll Cardiol 44:423–430

    Article  PubMed  Google Scholar 

  7. Karapolat H, Eyigor S, Zoghi M et al (2008) Effects of cardiac rehabilitation program on exercise capacity and chronotropic variables in patients with orthotopic heart transplant. Clin Res Cardiol 97(7):449–456

    Article  PubMed  Google Scholar 

  8. Kligfield P, Lauer MS (2006) Exercise electrocardiogram testing: beyond the ST segment. Circulation 114:2070–2082

    Article  PubMed  Google Scholar 

  9. Lahiri MK, Kannankeril PJ, Goldberger JJ (2008) Assessment of autonomic function in cardiovascular disease. Physiological basis and prognostic implications. J Am Coll Cardiol 51:1725–1733

    Article  PubMed  Google Scholar 

  10. Srivastava R, Blackstone EH, Lauer MS (2000) Association of smoking with abnormal exercise heart rate response and long-term prognosis in a healthy, population-based cohort. Am J Med 109:20–26

    Article  PubMed  CAS  Google Scholar 

  11. Lauer MS, Froelicher ES, Williams M, Kligfield P (2005) Exercise testing in asymptomatic adults. A statement for professionals from the AHA council on clinical cardiology, subcommittee on exercise, cardiac rehabilitation, and prevention. Circulation 112:771–776

    Article  PubMed  Google Scholar 

  12. Ba A, Delliaux S, Bregeon F, Levy S, Jammes Y (2009) Post-exercise heart rate recovery in healthy, obese and COPD patients: relationships with blood lactic acid and PaO2 levels. Clin Res Cardiol 98(1):52–58

    Article  PubMed  CAS  Google Scholar 

  13. Kokkinos P, Myers J, Kokkinos JP, Pittaras A, Narayan P, Manolis A, Karasik P, Greenberg M, Papademetriou V, Singh S (2008) Exercise capacity and mortality in black and white men. Circulation 117:614–622

    Article  PubMed  Google Scholar 

  14. Mark DB, Lauer MS (2003) Exercise capacity—the prognostic variable that doesn’t get enough respect. Circulation 108:1534–1536

    Article  PubMed  Google Scholar 

  15. Plisiene J, Blumberg A, Haager G et al (2008) Moderate physical exercise: a simplified approach for ventricular rate control in older patients with atrial fibrillation. Clin Res Cardiol 97(11):820–826

    Article  PubMed  CAS  Google Scholar 

  16. Möhlenkamp S, Wieneke H, Sack S, Erbel R (2007) Ruhe-EKG und Belastungs-EKG zur Risikostratifikation asymptomatischer Personen. Herz 32(5):362–370

    Article  PubMed  Google Scholar 

  17. Schmermund A, Möhlenkamp S, Stang A et al, for the Heinz Nixdorf Recall Study Investigative Group (2002) Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: rationale and design of the Heinz Nixdorf Recall study. Am Heart J 144:212–218

    Google Scholar 

  18. Erbel R, Möhlenkamp S, Lehmann N et al (2008) Heinz Nixdorf Recall Study Investigative Group sex related cardiovascular risk stratification based on quantification of atherosclerosis and inflammation. Atherosclerosis 197(2):662–672

    Article  PubMed  CAS  Google Scholar 

  19. Löllgen H, Erdmann E (2001) Ergometrie. Belastungsuntersuchungen in Klinik und Praxis (2. Auflage). Springer, Berlin, p 28

  20. Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    Article  PubMed  CAS  Google Scholar 

  21. Schmermund A, Möhlenkamp S, Berenbein S et al (2006) Population-based assessment of subclinical coronary atherosclerosis using EBCT. Atherosclerosis 185(1):177–182

    Article  PubMed  CAS  Google Scholar 

  22. Rose G, McCartney P, Reid DD (1977) Self-administration of a questionnaire on chest pain and intermittent claudication. Br J Prev Soc Med 31:42–48

    PubMed  CAS  Google Scholar 

  23. Jöckel KH, Lehmann N, Jaeger BR et al (2009) Smoking cessation and subclinical atherosclerosis—results from the Heinz Nixdorf Recall study. Atherosclerosis 203:221–227

    Article  PubMed  CAS  Google Scholar 

  24. Vivekananthan DP, Blackstone EH, Pothier CE, Lauer MS (2003) Heart rate recovery after exercise is a predictor of mortality, independent of the angiographic severity of coronary disease. J Am Coll Cardiol 42:831–838

    Article  PubMed  Google Scholar 

  25. Shetler K, Marcus R, Froelicher VF et al (2001) Heart rate recovery: validation and methodologic issues. J Am Coll Cardiol 38:1980–1987

    Article  PubMed  CAS  Google Scholar 

  26. Brener SJ, Pashkow FJ, Harvey SA et al (1995) Chronotropic response to exercise predicts angiographic severity in patients with suspected or stable coronary artery disease. Am J Cardiol 76:1228–1232

    Article  PubMed  CAS  Google Scholar 

  27. Da Costa Goncalves AC, Tank J, Diedrich A et al (2009) Diabetic hypertensive leptin receptor-deficient db/db mice develop cardioregulatory autonomic dysfunction. Hypertension 53(part 2):387–392

    Google Scholar 

  28. Schroeder EB, Chambless LE, Liao D et al (2005) Diabetes, glucose, insulin, and heart rate variability. the atherosclerosis risk in communities (ARIC) study. Diabetes Care 28:668–674

    Article  PubMed  CAS  Google Scholar 

  29. Niedermaier ON, Smith ML, Beightol LA, Zukowska-Grojec Z, Goldstein DS, Eckberg DL (1993) Influence of cigarette smoking on human autonomic function. Circulation 88:562–571

    PubMed  CAS  Google Scholar 

  30. Pehlivanidis AN, Athyros VG, Demitriadis DS et al (2001) Heart rate variability after long-term treatment with atorvastatin in hypercholesterolaemic patients with or without CAD. Atherosclerosis 157:463–469

    Article  PubMed  CAS  Google Scholar 

  31. Möhlenkamp S, Schmermund A, Budde T, Erbel R (2007) Aktuelle Studien zur Progression koronarer Kalzifikationen. MMW Fortschr Med 149(11):75–84

    PubMed  Google Scholar 

  32. Outkerk M, Stillman AE, Halliburton SS, Kalender WA, Möhlenkamp S, McCollough CH, Vliegenthart R, Shaw LJ, Stanford W, Taylor AJ, van Ooijen PM, Wexler L, Raggi P (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology (ESCR) and North American Society for Cardiovascular Imaging (NASCI). Eur Radiol 18(12):2785–2807

    Article  Google Scholar 

  33. Chaitman BR (2003) Abnormal heart rate responses to exercise predict increased long-term mortality regardless of coronary disease extent. The question is why? J Am Coll Cardiol 42:839–841

    Article  PubMed  Google Scholar 

  34. Desai MY, De la Pena-Almaguer E, Mannting F (2001) Abnormal heart rate recovery after exercise as a reflection of an abnormal chronotropic response. Am J Cardiol 81:1164–1169

    Article  Google Scholar 

  35. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE (2002) Exercise capacity and mortality among men referred for exercise testing. N Engl J Med 346:793–801

    Article  PubMed  Google Scholar 

  36. Gulati M, Black HR, Shaw LJ et al (2005) The prognostic value of a nomogram for exercise capacity in women. N Engl J Med 353:468–475

    Article  PubMed  CAS  Google Scholar 

  37. Budoff MJ, Shaw LJ, Liu ST et al (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49:1860–1870

    Article  PubMed  Google Scholar 

  38. Kojda G, Hambrecht R (2005) Molecular mechanisms of vascular adaptations to exercise. Physical activity as an effective antioxidant therapy? Cardiovasc Res 67(2):187–197

    Article  PubMed  CAS  Google Scholar 

  39. Möhlenkamp S, Lehmann N, Breuckmann F et al (2008) Running: the risk of coronary events—prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J 29(15):1903–1910

    Article  PubMed  Google Scholar 

  40. Möhlenkamp S, Schmermund A, Lehmann N et al, for the Heinz Nixdorf Recall Study Investigators (2007) Subclinical coronary atherosclerosis and resting ECG abnormalities in an unselected general population. Atherosclerosis 196(2):786–794

    Google Scholar 

  41. Gibbons RJ, Balady GJ, Bricker JT et al (2002) ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the ACC/AHA Task Force on practice guidelines (Committee to update the 1997 exercise testing guidelines). J Am Coll Cardiol 40:1531–1540

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Heinz Nixdorf Foundation, Germany, for their generous support of this study. This study is also supported by the German Ministry of Education and Science (BMBF), and the German Aerospace Center [Deutsches Zentrum für Luft- und Raumfahrt (DLR)], Bonn, Germany. GE Medical Systems provided hardware and technical help for acquisition of stress-ECG data and we thank Sebastian Gabler and Marvin Bovensiepen for their help in collecting the data. An additional research grant was received from Imatron Inc., South San Francisco, CA, which produced the EBCT scanners, and GE Imatron, South San Francisco, CA, after the acquisition of Imatron Inc. We are indebted to the all study participants and to the dedicated personnel of both the study centre of the Heinz Nixdorf Recall Study and the EBT-scanner facilities as well as to the investigative group.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Stefan Möhlenkamp.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplement Tables 1 and 2 (pdf 16.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Möhlenkamp, S., Lehmann, N., Schmermund, A. et al. Association of exercise capacity and the heart rate profile during exercise stress testing with subclinical coronary atherosclerosis: data from the Heinz Nixdorf Recall study. Clin Res Cardiol 98, 665–676 (2009). https://doi.org/10.1007/s00392-009-0054-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-009-0054-9

Keywords

Navigation