Skip to main content
Log in

Stellenwert von Kardio-CT und Kardio-MR zur Bestimmung des koronaren Risikos

Impact of both cardiac-CT and cardiac-MR on the assessment of coronary risk

  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Summary

Today’s definition of coronary artery disease (CAD) comprises two forms: obstructive and non-obstructive CAD. The 31–72% chance of a life-threatening event—like a myocardial infarction—with non-obstructive CAD is well documented in numerous studies. The objective in modern strategies of diagnosis and therapy should therefore be expedient identification of patients at high risk for coronary events, who will benefit from a customized therapy. Before initiating diagnostic procedures of CAD, a well defined strategy should be pursued. There are two possible primary objectives:

Assessment of the individual risk for a coronary event:

Assessment of the individual “absolute” risk for a coronary event is not possible using single traditional risk factors. The individual risk can be estimated by integrating several of the traditional risk factors into a scoring system. These so-called risk scores (e.g. Framingham score and Procam score), however, have been associated with shortcomings: insufficient discrimination of high-risk from low-risk individuals. The calcium score has therefore become increasingly established; this Agatston score is independent of the traditional risk factors, so there is no correlation between Agatston and Procam scores. Today, the calcium score is considered the superior test for identifying individuals at high risk for a coronary event and its use is recommended by the European Society of Cardiology (ESC) guidelines for prevention of cardiovascular diseases.

Proof or exclusion of a hemodynamically significant coronary stenosis:

Another concept is the definitive proof or exclusion of a hemodynamically “significant” coronary narrowing. The probability of an obstructive CAD is traditionally assessed by the type of chest pain, age, gender and stress-ECG. In patients with a low probability of an obstructive CAD, cardiac catheterization is not indicated, whereas in patients with a high probability of a hemodynamically significant coronary stenosis, an invasive strategy should be performed. Since non-invasive coronary angiography (CTA) with cardiac-CT has been shown to provide a high negative predictive value, CTA (with good imaging quality) is suitable for ruling out a significant obstructive CAD in the group at intermediate risk for an obstructive CAD. Another approach could be a functional test to initially prove a relevant, inducible myocardial ischemia: In a large cohort it was shown that patients will only prognostically benefit from revascularization procedures if the ischemic myocardial area is greater than 10%. Therefore, the assessment of the extent of myocardial ischemia is the domain of modern stress imaging tests. Stress-echocardiography and myocardial scintigraphy have almost the same sensitivity (74–80%, 84–90%, respectively) and specificity (84–89%, 77–86%, respectively), which are considerably higher than for stress-ECG.

Cardiac MR is most suitable for the assessment of myocardial perfusion, because it traces the first pass dynamics of gadolinium at rest and during stress in reproducible slices at an acceptable spatial and a high temporal resolution without ionizing radiation. Whether the non-invasive coronary angiography with cardiac-CT and the Adenosin-perfusion imaging with cardiac-MR will completely replace diagnostic cardiac catheterization and stress-echocardiography as well as myocardial scintigraphy remains to be evaluated in further studies.

Zusammenfassung

Heute wird die KHK in die stenosierende und in die nichtstenosierende Form eingeteilt. Die Gefährlichkeit der nichtstenosierenden KHK geht aus zahlreichen Studien hervor die belegen, dass „nichtsignifikante“ Koronarstenosen in 31–72% einen Herzinfarkt verursachten. Ziel moderner Strategien in Diagnostik und Therapie der KHK muss es daher sein, Patienten mit hohem Risiko für ein koronares Ereignis frühzeitig zu erkennen und einer optimalen Therapie zuzuführen. Zu Beginn einer Koronardiagnostik muss man sich aber zuerst darüber im Klaren sein, welche Fragestellung primär beantwortet werden soll:

Bestimmung des individuellen Risikos für ein koronares Ereignis:

Eine definitive Berechnung des individuellen, „absoluten“ Risikos für das Auftreten eines koronaren Ereignisses ist aus einem einzelnen der klassischen Risikofaktoren nicht möglich. Hierzu benötigt man die Integration mehrerer Risikofaktoren, die „Scores“. Aufgrund zahlreicher Limitationen dieser Scores hat sich der „Kalk-Score“ zunehmend klinisch etabliert. Für diesen Agatston-Score gilt aufgrund der wissenschaftlichen Datenlage, dass er eine von den klassischen Risikofaktoren unabhängige prognostische Aussagekraft besitzt. Folgerichtig besteht zwischen dem PROCAM-Score und dem Agatston-Score keine Korrelation. Der Kalk-Score ist zur Bestimmung des individuellen koronaren Risikos auch in den ESC-Leitlinien zur kardiovaskulären Prävention empfohlen.

Nachweis bzw. Ausschluss einer hämodynamisch wirksamen Koronarstenose:

Ziel dieses Konzeptes ist der möglichst weitgehende Nachweis bzw. Ausschluss einer höhergradigen, „hämodynamisch wirksamen“ Koronarstenose—im Sinne der „alten“ KHK Definition. Die Wahrscheinlichkeit des Vorliegens einer stenosierenden KHK wird klassisch anhand der Anamnese der Thoraxschmerzen, dem Alter, Geschlecht und des Ergebnisses des Belastung-EKGs ermittelt. Bei Patienten mit dementsprechend niedriger Wahrscheinlichkeit des Vorliegens einer Koronarstenose ist eine Herzkatheteruntersuchung nicht indiziert, während Patienten mit hoher Wahrscheinlichkeit des Vorliegens einer stenosierenden KHK einer Herzkatheteruntersuchung zugeführt werden sollten. Die nichtinvasive Koronarangiographie mit dem Kardio-CT (CTA) weist einen besonders hohen negativen prädiktiven Wert auf, so dass man diese nichtinvasive Koronarangiographie v.a. zum Ausschluss einer stenosierenden KHK diskutieren kann. Als Alternative zu dem primär morphologisch-anatomischenen Ansatz des Nachweises oder Ausschlusses einer Koronarstenose kann man ebenso begründet den Ischämienachweis in den Vordergrund der Diagnostik stellen: Aus einer größeren Untersuchung an über 10 000 Patienten ging hervor, dass Patienten nur von einer Myokardrevaskularisation prognostisch profitierten, wenn das ischämische Areal mindestens 10% der Muskelmasse ausmachte. Die Beurteilung der Ausdehnung sowie die regionale Zuordnung einer induzierten transienten Myokardischämie ist Domäne der Bild gebenden Verfahren: So liegen die Werte für Sensitivität und Spezifität für die Stressechokardiographie mit 74–80% bzw. 84– 89% deutlich höher als die des Belastungs-EKG und entsprechen der Sensitivität und Spezifität der Myokardszintigraphie mit 84–90% bzw. 77–86%.

Das Kardio-MR ist für die Beurteilung der Perfusion besonders geeignet, weil es ohne ionisierende Strahlen mit akzeptabler räumlicher und hoher zeitlicher Auflösung in reproduzierbaren Schichten die First-Pass-Dynamik des Gadoliniums vor und nach Adenosingabe bildlich erfasst. Inwieweit die nichtinvasive Koronarangiographie mit dem Kardio-CT die Herzkatheterdiagnostik und der Adenosin-Perfusionstest mit dem Kardio-MR die Stressechokardiographie bzw. die Myokardszintigraphie ersetzen wird, bleibt in Abhängigkeit von den Ergebnissen künftiger Studien abzuwarten.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Statistisches Bundesamt Deutschland (2005) http://www.destatis.de.

  2. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375

    CAS  PubMed  Google Scholar 

  3. Ambrose JA, Tannenbaum MA, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62

    CAS  PubMed  Google Scholar 

  4. Devereux RB, Alderman MH (1993) Role of preclinical cardiovascular disease in the evolution from risk factor exposure to development of morbid events. Circulation 88:1444–1455

    CAS  PubMed  Google Scholar 

  5. Giroud D, Li JM, Urban P, Meier B, Rutishauer W (1992) Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Am J Cardiol 69:729–732

    Article  CAS  PubMed  Google Scholar 

  6. Hackett D, Davies G, Maseri A: Preexisting coronary stenoses in patients with first myocardial infarction are not necessarily severe. Eur Heart J, 1988; 9:1317–1323

    Google Scholar 

  7. Hackett D, Verwilghen J, Davies G, Maseri A (1989) Coronary stenoses before and after acute myocardial infarction. Am J Cardiol 63:1517–1518

    Article  CAS  PubMed  Google Scholar 

  8. Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166

    CAS  PubMed  Google Scholar 

  9. Moise A, Lesperance J, Theroux P, Taeymans Y, Goulet C, Bourassa MG (1984) Clinical and angiographic predictors of new total coronary occlusion in coronary artery disease: analysis of 313 nonoperated patients. Am J Cardiol 54:1176–1181

    CAS  PubMed  Google Scholar 

  10. Nobuyoshi M, Tanaka M, Nosaka H, Kimura T, Yokoi H, Hamasaki N, Kim K, Shindo T, Kimura K (1991) Progression of coronary atherosclerosis: is coronary spasm related to progression? J Am Coll Cardiol 18:904–910

    CAS  PubMed  Google Scholar 

  11. Proudfit WL, Bruschke VG, Sones FM Jr (1980) Clinical course of patients with normal or slightly or moderately abnormal coronary arteriograms: 10-year follow-up of 521 patients. Circulation 62:712–717

    CAS  PubMed  Google Scholar 

  12. Yokoya K, Takatsu H, Suzuki T, Hosokawa H, Ojio S, Matsubara T, Tanaka T, Watanabe S, Morita N, Nishigaki K, Takemura G, Noda T, Minatoguchi S, Fujiwara H (1999) Process of progression of coronary artery lesions from mild or moderate stenosis to moderate or severe stenosis: A study based on four serial coronary arteriograms per year. Circulation 100:903–909

    CAS  PubMed  Google Scholar 

  13. Bruckenberger E (2004) Herzbericht 2003. 16. Bericht, Sektorenübergreifende Gesundheitsberichterstattung zur Kardiologie und Herzchirurgie in Deutschland. Mit vergleichenden Daten aus Österreich und anderen europäischen Staaten. Hannover

  14. Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB, Wilson PW (2003) Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA 290:891–897

    Article  PubMed  Google Scholar 

  15. The NCEP Expert Panel (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285:2486–2497

    Google Scholar 

  16. Assmann G, Cullen P, Schulte H (2002) Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 105:310–315

    Article  PubMed  Google Scholar 

  17. Conroy RM, Pyorala K, Fitzgerald AP, Sans S, Menotti A, De Backer G, De Bacquer D, Ducimetiere P, Jousilahti P, Keil U, Njolstad I, Oganov RG, Thomsen T, Tunstall-Pedoe H, Tverdal A, Wedel H, Whincup P, Wilhelmsen L, Graham IM (2003) Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 24:987–1003

    CAS  PubMed  Google Scholar 

  18. Keil U, Fitzgerald AP, Gohlke H, Wellmann J, Hense H-W (2005) Risikoabschätzung tödlicher Herz-Kreislauf-Erkrankungen: die neuen SCORE-Deutschland-Tabellen für die Primärprävention. Deutsches Ärzteblatt 25:A1808–A1812

    Google Scholar 

  19. Empana JP, Ducimetiere P, Arveiler D, Ferrieres J, Evans A, Ruidavets JB, Haas B, Yarnell J, Bingham A, Amouyel P, Dallongeville J (2003) Are the Framingham and PROCAM coronary heart disease risk functions applicable to different European populations? The PRIME Study. Eur Heart J 24:1903–1911

    CAS  PubMed  Google Scholar 

  20. Lenz M, Mühlhauser I (2004) Kardiovaskuläre Risikoschätzung fur eine informierte Patientenentscheidung. Wie valide sind die Prognoseinstrumente ? Med Klin 99:651–661

    Google Scholar 

  21. Laaksonen DE, Niskanen L, Nyyssonen K, Punnonen K, Tuomainen TP, Salonen JT (2005) C-reactive protein in the prediction of cardiovascular and overall mortality in middle-aged men: a population-based cohort study. Eur Heart J 26:1783–1789

    Article  CAS  PubMed  Google Scholar 

  22. Wang TJ, Larson MG, Levy D, Benjamin EJ, Leip EP, Omland T, Wolf PA, Vasan RS (2004) Plasma natriuretic peptide levels and the risk of cardiovascular events and death. N Engl J Med 350:655–663

    Article  CAS  PubMed  Google Scholar 

  23. Zylberstein DE, Bengtsson C, Bjorkelund C, Landaas S, Sundh V, Thelle D, Lissner L (2004) Serum homocysteine in relation to mortality and morbidity from coronary heart disease: a 24-year follow-up of the population study of women in Gothenburg. Circulation 109:601–606

    Article  CAS  PubMed  Google Scholar 

  24. Ariyo AA, Thach C, Tracy R (2003) Lp(a) lipoprotein, vascular disease, and mortality in the elderly. N Engl J Med 349:2108–2115

    Article  CAS  PubMed  Google Scholar 

  25. Walldius G, Jungner I, Holme I, Aastveit AH, Kolar W, Steiner E (2001) High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 358:2026–2033

    Article  CAS  PubMed  Google Scholar 

  26. Ridker PM, Cushman M, Stampfer MJ, Tracy RP, Hennekens CH (1997) Inflammation, aspirin, and the risk of cardiovascular disease in apparently healthy men. N Engl J Med 336:973–979

    Article  CAS  PubMed  Google Scholar 

  27. Koenig W, Lowel H, Baumert J, Meisinger C (2004) C-reactive protein modulates risk prediction based on the Framingham Score: implications for future risk assessment: results from a large cohort study in southern Germany. Circulation 109:1349–1353

    Article  PubMed  Google Scholar 

  28. Danesh J, Wheeler JG, Hirschfield GM, Eda S, Eiriksdottir G, Rumley A, Lowe GD, Pepys MB, Gudnason V (2004) C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N Engl J Med 350:1387–1397

    Article  CAS  PubMed  Google Scholar 

  29. van der Meer IM, de Maat MP, Kiliaan AJ, van der Kuip DA, Hofman A, Witteman JC (2003) The value of C-reactive protein in cardiovascular risk prediction: the Rotterdam Study. Arch Intern Med 163:1323–1328

    Article  PubMed  Google Scholar 

  30. Hackam DG, Anand SS (2003) Emerging risk factors for atherosclerotic vascular disease: a critical review of the evidence. JAMA 290:932–940

    Article  PubMed  Google Scholar 

  31. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832

    CAS  PubMed  Google Scholar 

  32. Raggi P, Callister TQ, Cooil B, He ZX, Lippolis NJ, Russo DJ, Zelinger A, Mahmarian JJ (2000) Identification of patients at increased risk of first unheralded acute myocardial infarction by electron-beam computed tomography. Circulation 101:850–855

    CAS  PubMed  Google Scholar 

  33. Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291:210–215

    Article  CAS  PubMed  Google Scholar 

  34. Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD (1996) Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1173 asymptomatic subjects. Circulation 93:1951–1953

    CAS  PubMed  Google Scholar 

  35. Arad Y, Spadaro LA, Goodman K, Newstein D, Guerci AD (2000) Prediction of coronary events with electron beam computed tomography. J Am Coll Cardiol 36:1253–1260

    Article  CAS  PubMed  Google Scholar 

  36. Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV, Liu K (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107:2571–2576

    Article  PubMed  Google Scholar 

  37. Möhlenkamp S, Lehmann N, Schmermund A, Pump H, Moebus S, Baumgart D, Seibel R, Grönemeyer DH, Jockel KH, Erbel R (2003) Prognostic value of extensive coronary calcium quantities in symptomatic males–a 5-year follow-up study. Eur Heart J 24:845–854

    PubMed  Google Scholar 

  38. Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228:826–833

    PubMed  Google Scholar 

  39. Vliegenthart R, Oudkerk M, Song B, van der Kuip DA, Hofman A, Witteman JC (2002) Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The Rotterdam Coronary Calcification Study. Eur Heart J 23:1596–1603

    Article  CAS  PubMed  Google Scholar 

  40. Wayhs R, Zelinger A, Raggi P (2002) High coronary artery calcium scores pose an extremely elevated risk for hard events. J Am Coll Cardiol 39:225–230

    Article  PubMed  Google Scholar 

  41. Wong ND, Hsu JC, Detrano RC, Diamond G, Eisenberg H, Gardin JM (2000) Coronary artery calcium evaluation by electron beam computed tomography and its relation to new cardiovascular events. Am J Cardiol 86:495–498

    Article  CAS  PubMed  Google Scholar 

  42. Taylor AJ, Burke AP, O’Malley PG, Farb A, Malcom GT, Smialek J, Virmani R (2000) A comparison of the Framingham risk index, coronary artery calcification, and culprit plaque morphology in sudden cardiac death. Circulation 101:1243–1248

    CAS  PubMed  Google Scholar 

  43. Taylor AJ, Feuerstein I, Wong H, Barko W, Brazaitis M, O’Malley PG (2001) Do conventional risk factors predict subclinical coronary artery disease? Results from the Prospective Army Coronary Calcium Project. Am Heart J 141:463–468

    Article  CAS  PubMed  Google Scholar 

  44. Arad Y, Goodman KJ, Roth M, Newstein D, Guerci AD (2005) Coronary calcification, coronary disease risk factors, C-reactive protein, and atherosclerotic cardiovascular disease events: the St. Francis Heart Study. J Am Coll Cardiol 46:158–165

    CAS  PubMed  Google Scholar 

  45. Taylor AJ, Bindeman J, Feuerstein I, Cao F, Brazaitis M, O’Malley PG (2005) Coronary calcium independently predicts incident premature coronary heart disease over measured cardiovascular risk factors mean three-year outcomes in the Prospective Army Coronary Calcium (PACC) Project. J Am Coll Cardiol 46:807–814

    Article  CAS  PubMed  Google Scholar 

  46. Hecht HS, Superko HR (2001) Electron beam tomography and National Cholesterol Education Program guidelines in asymptomatic women. J Am Coll Cardiol 37:1506–1511

    Article  CAS  PubMed  Google Scholar 

  47. Hunt ME, O’Malley PG, Vernalis MN, Feuerstein IM, Taylor AJ (2001) C-reactive protein is not associated with the presence or extent of calcified subclinical atherosclerosis. Am Heart J 141:206–210

    Article  CAS  PubMed  Google Scholar 

  48. Reilly MP, Wolfe ML, Localio AR, Rader DJ (2003) C-reactive protein and coronary artery calcification: the Study of Inherited Risk of Coronary Atherosclerosis (SIRCA). Arterioscler Thromb Vasc Biol 23:1851–1856

    CAS  PubMed  Google Scholar 

  49. Achenbach S, Nomayo A, Couturier G, Ropers D, Pohle K, Schlundt C, Schmermund A, Matarazzo TJ, Hoffmann U, Daniel WG, Killip T (2003) Relation between coronary calcium and 10-year risk scores in primary prevention patients. Am J Cardiol 92:1471–1475

    Article  CAS  PubMed  Google Scholar 

  50. De Backer G, Ambrosioni E, Borch-Johnsen K, Brotons C, Cifkova R, Dallongeville J, Ebrahim S, Faergeman O, Graham I, Mancia G, Manger Cats V, Orth-Gomer K, Perk J, Pyorala K, Rodicio JL, Sans S, Sansoy V, Sechtem U, Silber S, Thomsen T, Wood D (2003) Executive summary: european guidelines on cardiovascular disease prevention in clinical practice. Third joint task force of european and other societies on cardiovascular disease prevention in clinical practice (executive summary). Eur Heart J 24:1601–1610

    Article  PubMed  Google Scholar 

  51. Honda O, Sugiyama S, Kugiyama K, Fukushima H, Nakamura S, Koide S, Kojima S, Hirai N, Kawano H, Soejima H, Sakamoto T, Yoshimura M, Ogawa H (2004) Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol 43:1177–1184

    Article  PubMed  Google Scholar 

  52. van der Meer IM, Bots ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109:1089–1094

    Article  PubMed  Google Scholar 

  53. Criqui MH, Fronek A, Barrett-Connor E, Klauber MR, Gabriel S, Goodman D (1985) The prevalence of peripheral arterial disease in a defined population. Circulation 71:510–515

    CAS  PubMed  Google Scholar 

  54. Hirsch AT, Criqui MH, Treat-Jacobson D, Regensteiner JG, Creager MA, Olin JW, Krook SH, Hunninghake DB, Comerota AJ, Walsh ME, McDermott MM, Hiatt WR (2001) Peripheral arterial disease detection, awareness, and treatment in primary care. JAMA 286:1317–1324

    Article  CAS  PubMed  Google Scholar 

  55. Diehm C, Darius H, Pittrow D, Allenberg J (2005) Knöchel-Arm-Index: Ein wegweisender Risikomarker für die hausärztliche Praxis. Deutsches Ärzteblatt 102:A2310–A2313

    Google Scholar 

  56. Otah KE, Madan A, Otah E, Badero O, Clark LT, Salifu MO (2004) Usefulness of an abnormal ankle-brachial index to predict presence of coronary artery disease in African-Americans. Am J Cardiol 93:481–483

    Article  PubMed  Google Scholar 

  57. Chambless LE, Heiss G, Folsom AR, Rosamond W, Szklo M, Sharrett AR, Clegg LX (1997) Association of coronary heart disease incidence with carotid arterial wall thickness and major risk factors: the Atherosclerosis Risk in Communities (ARIC) Study, 1987–1993. Am J Epidemiol 146:483–494

    CAS  PubMed  Google Scholar 

  58. O’Leary DH, Polak JF, Kronmal RA, Manolio TA, Burke GL, Wolfson SK Jr (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults. Cardiovascular Health Study Collaborative Research Group. N Engl J Med 340:14–22

    CAS  PubMed  Google Scholar 

  59. Pearson TA, Blair SN, Daniels SR, Eckel RH, Fair JM, Fortmann SP, Franklin BA, Goldstein LB, Greenland P, Grundy SM, Hong Y, Miller NH, Lauer RM, Ockene IS, Sacco RL, Sallis JF Jr, Smith SC Jr, Stone NJ, Taubert KA (2002) AHA guidelines for primary prevention of cardiovascular disease and stroke: 2002 update: consensus panel guide to comprehensive risk reduction for adult patients without coronary or other atherosclerotic vascular diseases. American Heart Association Science Advisory and Coordinating Committee. Circulation 106:388–391

    Article  PubMed  Google Scholar 

  60. Mihaylova B, Briggs A, Armitage J, Parish S, Gray A, Collins R (2005) Cost-effectiveness of simvastatin in people at different levels of vascular disease risk: economic analysis of a randomised trial in 20 536 individuals. Lancet 365:1779–1785

    PubMed  Google Scholar 

  61. The Heart Protection Study Collaborative Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20 536 highrisk individuals: a randomised placebo-controlled trial. Lancet 360:7–22

    Google Scholar 

  62. Greenland P, Gaziano JM (2003) Clinical practice. Selecting asymptomatic patients for coronary computed tomography or electrocardiographic exercise testing. N Engl J Med 349:465–473

    Article  PubMed  Google Scholar 

  63. Thompson GR, Partridge J (2004) Coronary calcification score: the coronary-risk impact factor. Lancet 363: 557–559

    Article  CAS  PubMed  Google Scholar 

  64. Schmermund A, Erbel R, Silber S (2002) Age and gender distribution of coronary artery calcium measured by four-slice computed tomography in 2030 persons with no symptoms of coronary artery disease. The MUNICH registry. Am J Cardiol 90:168–173

    Article  CAS  PubMed  Google Scholar 

  65. Gibbons RJ, Balady GJ, Bricker JT, Chaitman BR, Fletcher GF, Froelicher VF, Mark DB, McCallister BD, Mooss AN, O’Reilly MG, Winters WL Jr, Gibbons RJ, Antman EM, Alpert JS, Faxon DP, Fuster V, Gregoratos G, Hiratzka LF, Jacobs AK, Russell RO, Smith SC Jr (2002) ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the american college of cardiology/american heart association task force on practice guidelines (Committee to Update the 1997 Exercise Testing Guidelines). Circulation 106:1883–1892

    Article  PubMed  Google Scholar 

  66. Mieres JH, Shaw LJ, Arai A, Budoff MJ, Flamm SD, Hundley WG, Marwick TH, Mosca L, Patel AR, Quinones MA, Redberg RF, Taubert KA, Taylor AJ, Thomas GS, Wenger NK (2005) Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: consensus statement from the cardiac imaging committee, council on clinical cardiology, and the cardiovascular imaging and intervention committee, council on cardiovascular radiology and intervention american heart association. Circulation 111:682–696

    Article  PubMed  Google Scholar 

  67. Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 300:1350–1358

    CAS  PubMed  Google Scholar 

  68. Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, Wildermuth S (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487

    PubMed  Google Scholar 

  69. Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557

    Article  PubMed  Google Scholar 

  70. Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154

    Article  PubMed  Google Scholar 

  71. Silber S, Albertsson P, Aviles FF, Camici PG, Colombo A, Hamm C, Jorgensen E, Marco J, Nordrehaug JE, Ruzyllo W, Urban P, Stone GW, Wijns W (2005) Guidelines for percutaneous coronary interventions. The task force for percutaneous coronary interventions of the european society of cardiology. Eur Heart J 26:804–847

    Article  PubMed  Google Scholar 

  72. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS (2003) Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation 107:2900–2907

    Article  PubMed  Google Scholar 

  73. Gianrossi R, Detrano R, Mulvihill D, Lehmann K, Dubach P, Colombo A, McArthur D, Froelicher V (1989) Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80:87–98

    CAS  PubMed  Google Scholar 

  74. Silber S (1996) Stressechokardiographie versus Myokardszintigraphie: Vergleichende Wertigkeit bei koronarer Herzerkrankung. Herz 21:136–141

    CAS  PubMed  Google Scholar 

  75. Lee TH, Boucher CA (2001) Clinical practice. Noninvasive tests in patients with stable coronary artery disease. N Engl J Med 344:1840–1845

    CAS  PubMed  Google Scholar 

  76. Schinkel AF, Bax JJ, Geleijnse ML, Boersma E, Elhendy A, Roelandt JR, Poldermans D (2003) Noninvasive evaluation of ischaemic heart disease: myocardial perfusion imaging or stress echocardiography? Eur Heart J 24:789–800

    CAS  PubMed  Google Scholar 

  77. Schwitter J (2005) Comparison of MR myocardial perfusion imaging with SPECT in known or suspected coronary artery disease: a multicentre, multivendor dose finding study (IMPACT). Clincial Trial Update Session, Annual meeting of the European Society of Cardiology (ESC). Stockholm (oral presentation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Silber F.A.C.C., F.E.S.C..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silber, S., Richartz, B.M. Stellenwert von Kardio-CT und Kardio-MR zur Bestimmung des koronaren Risikos. ZS Kardiologie 94 (Suppl 4), iv70–iv80 (2005). https://doi.org/10.1007/s00392-005-1416-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-005-1416-6

Key words

Schlüsselwörter

Navigation