Skip to main content

Advertisement

Log in

Elevated serum markers for collagen synthesis in patients with hypertrophic cardiomyopathy and diastolic dysfunction

Erhöhte Serummarker der Kollagensynthese bei HCM

  • ORIGINAL PAPER
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung

Ziel dieser Studie war es, die Hypothese eines veränderten Kollagenstoffwechsels bei Patienten mit hypertropher Kardiomyopathie (HCM) zu testen. Hierzu wurden zirkulierende Marker des Typ-I-Kollagenstoffwechsels untersucht und mit echokardiographischen Parametern der diastolischen Funktion korreliert.

Hintergrund

Die HCM ist eine häufige Erkrankung bei Erwachsenen mit unterschiedlicher klinischer Manifestation. Die linksventrikuläre Hypertrophie und der erhöhte intramyokardiale Kollagengehalt verursachen eine diastolische Dysfunktion.

Methoden

Bei 26 Patienten mit HCM und 38 Kontrollen (Alter: 57±3 und 54±2 Jahre, p=n.s.) wurden die Serumkonzentrationen der kollagenolytischen Matrixmetalloproteinase-1 (MMP-1) unnd deren Inhibitor TIMP-1, sowie die Marker für Typ-I-Kollagensynthese (PICP) und -degradation (ICTP) mittels ELISA und RIA bestimmt. Die diastolische Funktion wurde mittels Dopplerechokardiographie bestimmt.

Ergebnisse

Freies TIMP-1 war bei HCM im Vergleich zu den Kontrollen erhöht (216,78±9.89 vs. 183,77±7,57 ng/ml; p=0,006), ebenso PICP (165,92±10.26 vs. 114,57±6,38 μg/l; p<0,001). Freies MMP-1 war bei HCM signifikant erniedrigt (1,13±0,20 vs. 2,33±0,34; p=0,01). ICTP unterschied sich nicht. Die MMP-1/TIMP-1-Ratio war bei HCM significant erniedrigt (0,006±0,001 vs. 0,012±0,001, p=0,003). PICP korrelierte positiv mit der diastolischen E/A-Ratio (r =0,389; p=0,05) und der Septumdicke (r=0,484; p=0,01).

Schlussfolgerung

Der Serummarker der Kollagensynthese (PICP) ist bei Patienten mit HCM erhöht. Bei erhöhtem Serummarker für eine Hemmung der Kollagenolyse (TIMP-1) und einer Verschiebung der MMP-1/TIMP-1-Ratio zu Gunsten des Inhibitors ist eine Vermehrung des Kollagengehaltes (Fibrose) anzunehmen, die zur passiven diastolischen Dysfunktion bei Patienten mit HCM führt.

Summary

Objectives

The hypothesis of impaired collagenolysis in patients with hypertrophic cardiomyopathy (HCM) was tested by measuring serum markers of type-I collagen metabolism. These markers were correlated with echocardiographic parameters of diastolic function.

Background

HCM is a common disease in the adult population with a wide range of clinical manifestations. Left ventricular hypertrophy and increased intramyocardial collagen content are known to cause diastolic dysfunction in patients with HCM.

Methods

In 26 patients with HCM and 38 control subjects (aged: 57±3 and 54±2 years, p=n.s.) serum levels of collagenolytic matrixmetalloproteinase-1 (MMP-1) and its inhibitor TIMP-1, the markers for collagen type-I synthesis (PICP) and degradation (ICTP) were determined by ELISA and RIA. Diastolic function were determined by Doppler echocardiography.

Results

Free TIMP-1 was elevated in HCM compared to controls (216,78±9,89 vs 183.77±7.57 ng/ml ; p=0.006) as well as PICP (165.92±10.26 vs 114.57±6.38 μg/l; p<0.001). Free MMP-1 was significantly lower in HCM (1.13±0.20 vs 2.33±0.34; p=0.01). ICTP did not differ. The MMP-1/TIMP-1 ratio was significantly lower in HCM (0.006±0.001 vs 0.012±0.001, p=0.003). PICP correlated positively with diastolic E/A ratio (r=0.389; p=0.05) and septal thickness (r=0.484; p=0.01).

Conclusions

Serum marker of collagen synthesis (PICP) is increased in patients with HCM. Increased marker for inhibition of collagenolysis (TIMP-1) and a disturbed balance of collagen synthesis and degradation (ratio) with a predominance of inhibition of collagenolysis indicates collagen accumulation (fibrosis), which explains passive diastolic dysfunction in patients with HCM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Beer G, Reinecke P, Gabbert HE et al (2002) Fabry disease in patients with hypertrophic cardiomyopathy (HCM). Z Kardiol 91(12):992–1002

    Article  CAS  PubMed  Google Scholar 

  2. Briguori C, Betocchi S, Romano M et al (1999) Exercise capacity in hypertrophic cardiomyopahty depends on left ventricular diastolic function. Am J Cardiol 84:309–315

    Article  CAS  PubMed  Google Scholar 

  3. Brilla CG, Maisch B, Zhou G et al (1995) Hormonal regulation of cardiac fibroblast function. Eur Heart J 16 (Suppl C):45–50

    CAS  PubMed  Google Scholar 

  4. Burlew BS, Weber KT (2002) Cardiac fibrosis as a cause of diastolic dysfunction. Herz 27(2):92–98

    Article  PubMed  Google Scholar 

  5. Cecchi F, Olivotto I, Gistri R et al (2003) Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 349(11):1027–1135

    Article  CAS  PubMed  Google Scholar 

  6. Chikamori T, Counihan PJ, Doi YL et al (1992) Mechanisms of exercise limitation in hypertrophic cardiomyopathy. J Am Coll Cardiol 19:507–512

    CAS  PubMed  Google Scholar 

  7. Diez J, Laviades C, Monreal I et al (1995) Toward the biochemical assessment of myocardial fibrosis in hypertensive patients. Am J Cardiol 76(13):14D–17D

    Article  CAS  PubMed  Google Scholar 

  8. Dohlemann C, Hebe J, Meitinger T (2000) Apical hypertrophic cardiomyopathy due to a de novo mutation Arg719Trp of the b-myosin heavy chain gene and cardiac arrest in childhood: A case report and family study. Z Kardiol 89(7):612–619

    Article  CAS  PubMed  Google Scholar 

  9. Eriksen EF, Charles P, Melsen F et al (1993) Serum markers of type I collagen formation and degradation in metabolic bone disease: Correlation to bone histomorphometry. J Bone Miner Res 8:127–132

    CAS  PubMed  Google Scholar 

  10. Factor SM, Butany J, Sole MJ, Wigle ED et al (1982) Pathologic fibrosis and matrix connective tissue in the subaortic myocardium of patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 17:1343–1351

    Google Scholar 

  11. Johnson RA, Palacios I (1982) Dilated cardiomyopathies of the adult. N Engl J Med 307:1051–1058

    CAS  PubMed  Google Scholar 

  12. Kuhn H, Gietzen FH, Leuner C (2000) Transcoronary ablation of septal hypertrophy (TASH): a new treatment option for hypertrophic obstructive cardiomyopathy. Z Kardiol 89 (Suppl 4):IV41–54

    Article  PubMed  Google Scholar 

  13. Laviades C, Varo N, Fernandez J et al (1998) Abnormalities of the extracellular degradation of collagen type I in essential hypertension. Circ 98(6):535–540

    CAS  Google Scholar 

  14. Lawrenz T, Kuhn H (2004) Endocardial radiofrequency ablation of septal hypertrophy: A new catheter based modality of gradient reduction in hypertrophic obstructive cardiomyopathy. Z Kardiol 93(6):493–499

    Article  CAS  PubMed  Google Scholar 

  15. Lombardi R, Betocchi S, Losi MA et al (2003) Myocardial collagen turn-over in hypertrophic cardiomyopathy. Circ 108(12):1466–1460

    Google Scholar 

  16. Maron BJ, Gardin JM, Flack JM et al (1995) Prevalence of hypertrophic cardiomypoathy in a general population of young adults. Circulation 92:785–789

    CAS  PubMed  Google Scholar 

  17. Maron BJ, Gottiener JS, Epstein SE (1981) Patterns and significance of distribution of left ventricular hypertrophy in hypertophic cardiomyopathy. Am J Cardiol 48:418–428

    Article  CAS  PubMed  Google Scholar 

  18. Maron BJ, Wolfson JK, Epstein SE et al (1986) Intramural (“small vessel”) coronary artery disease in hypertrophic cardiomyopathy. J Am Coll Cardiol 8:545–557

    CAS  PubMed  Google Scholar 

  19. Maron BJ, Wolfson JK, Epstein SE et al (1987) Morphologic evidence for small vessel disease in patients with hypertrophic cardiomyopathy. Z Kardiol 76(Suppl 3):91–100

    Google Scholar 

  20. Moon JCC, McKenna WJ, McCrohon JA et al (2003) Toward Clinical Risk Assessment in Hypertrophic Cardiomyopathy With Gadolinium Cardiovascular Magnetic Resonance. J Am Coll Cardiol 41:1561–1567

    Article  PubMed  Google Scholar 

  21. Mundhenke M, Stark P, Schulte HD et al (2002) Myocardial collagen type I and impaired left ventricular function under exercise in hypertrophic cardiomyopathy. Thorac Cardiovasc Surg 50(4):216–222

    Article  CAS  PubMed  Google Scholar 

  22. Nishimura RA, Tajik AJ (1997) Evaluation of diastolic filling of left ventricle in health and disease: Doppler echocardiography is the clinician’s Rosetta Stone. J Am Coll Cardiol 30(1):1–18

    Article  Google Scholar 

  23. Sahn DJ, DeMaria A, Kisslo J et al (1978) Recommendations regarding quantitation in M-mode echocardiography: results of a survey of echocardiographic measurements. Circ 58:1072–1083

    CAS  Google Scholar 

  24. Schwammenthal E, Block M, Schwartzkopff B et al (1992) Prediction of the site and severity of obstruction in hypertrophic cardiomyopathy by color flow mapping and continuous wave Doppler echocardiography. J Am Coll Cardiol 20(4):964–972

    CAS  PubMed  Google Scholar 

  25. Schwartzkopff B, Fassbach M, Pelzer B et al (2002) Elevated serum markers of collagen degradation in patients with mild to moderate dilated cardiomyopathy. Eur J Heart Fail 4:439–444

    Article  CAS  PubMed  Google Scholar 

  26. Schwartzkopff B, Mundhenke M, Strauer BE (1998) Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia. J Am Coll Cardiol 31 (5):1089–1096

    Article  CAS  PubMed  Google Scholar 

  27. Shirani J, Pick R, Roberts WC et al (2000) Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J Am Coll Cardiol 35(1):36–44

    Article  CAS  PubMed  Google Scholar 

  28. Spinale FG, Coker ML, Krombach SR et al (1999) Matrix metalloproteinase inhibition during the development of congestive heart failure: effects on left ventricular dimensions and function. Circ Res 85(4):364–376

    CAS  PubMed  Google Scholar 

  29. Stetler-Stevenson WG (1996) Dynamics of matrix turnover during pathologic remodeling of the extracellular matrix. Am J Pathol 148:1345–1350

    CAS  PubMed  Google Scholar 

  30. Strauer BE, Atef Mahmoud M, Bayer F et al (1984) Reversal of left ventricular hypertrophy and improvement of cardiac function in man by nifedipine. Eur Heart J 5(Suppl F):53–60

    Google Scholar 

  31. Sys SU, Brutsaert DL (1995) Diagnostic Significance of Impaired LV Systolic Relaxation in Heart Failure. Circulation 92:3377–3380

    CAS  PubMed  Google Scholar 

  32. Tanaka M, Fujiwara H, Onodera T et al (1986) Quantitative analysis of myocardial fibrosis in normals, hypertensive hearts and hypertrophic cardiomyopathy. Br Heart J 55:575–581

    CAS  PubMed  Google Scholar 

  33. Tyagi SC, Campbell SE, Reddy HK et al (1996) Matrix metalloproteinase activity expression in infarcted, non-infarcted and dilated cardiomyopathic human hearts. Mol Cell Biochem 155:13–21

    Article  CAS  PubMed  Google Scholar 

  34. Tyagi SC, Kumar SG, Banks J et al (1995) Co-expression of tissue inhibitor and matrix metalloproteinase in myocardium. J Mol Cell Cardiol 27 (10):2177–2189

    Article  CAS  PubMed  Google Scholar 

  35. Wigle ED, Rakowski H, Kimball BP et al (1995) Hypertrophic cardiomyopathy: clinical spectrum and treatment. Circulation 92:1680–1692

    CAS  PubMed  Google Scholar 

  36. Zu Vilsendorf DM, Strunk-Mueller C, Gietzen FH, Kuhn H (2002) Simultaneous hypertrophic obstructive cardiomyopathy and long QT syndrome: a potentially malignant association. Z Kardiol 91(7):575–580

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Schwartzkopff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fassbach, M., Schwartzkopff, B. Elevated serum markers for collagen synthesis in patients with hypertrophic cardiomyopathy and diastolic dysfunction. ZS Kardiologie 94, 328–335 (2005). https://doi.org/10.1007/s00392-005-0214-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-005-0214-5

Schlüsselwörter

Key words

Navigation