Skip to main content

Advertisement

Log in

Heart failure and statins—Why do we need a clinical trial?

Herzinsuffizienz und Statine—Warum ist eine kontrollierte Studie notwendig?

  • CRITICAL PERSPECTIVE
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung

Der Effekt einer Therapie mit Statinen auf die Morbidität und Sterblichkeit ist bei Patienten in der Sekundärund Primärprävention sowie bei Patienten mit akutem Koronarsyndrom gut belegt. Neuere Untersuchungen zeigten pleiotrope Effekte, die auch den Kardiomyozyten betreffen. Es gibt allerdings auch Hinweise, dass eine Senkung des LDL-Cholesterins zur Sterblichkeit bei schwerer Herzinsuffizienz in Beziehung steht. Darüber hinaus gibt es pleiotrope Effekte, die die Mitochondrienfunktion nachteilig beeinflussen könnten. Da es keine Sicherheitsdaten zur Verwendung von Statinen bei Patienten mit höhergradiger chronischer Herzinsuffizienz gibt, muss dringend eine randomisierte placebokontrollierte Studie durchgeführt werden.

Summary

The effect of statins to reduce mortality and morbiditiy in primary and secondary prevention as well as in acute coronary syndroms is well established. Recent data show that pleiotropic effects might also have direct effects on the myocardial cell. However, in chronic heart failure the outcome is inversely related to LDL-plasma concentrations and other pleiotropic effects might impair mitochondrial function. Since there are no safety data on the use of statins in chronic heart failure, a controlled randomized and placebo-controlled trial is urgently needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Heart Protection Study Group (2002) MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 hig-risk individuals: a randomised placebo-controlled trial. Lancet 360:7–22

    Article  PubMed  Google Scholar 

  2. Sacks FM, Pfeffer MA, Moye AL, Rouleau Jl, Rutherford JD, Cole TG, Brown L, Warnica JW, Arnold JM, Wun CC, Davis BR, Braunwald E (1996) The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. Cholesterol and Recurrent Events Trial investigators. N Engl J Med 335:1001–1009

    Article  CAS  PubMed  Google Scholar 

  3. Sacks FM, Tonkin AM, Shepherd J, Braunwald E, Cobbe S, Hawkins CM, Keech A, Packard C, Simes J, Byington R, Furberg CD (2002) Effect of pravastatin on coronary disease events in subgroups defined by coronary risk factors: the Prospective Pravastatin Pooling Project. Circulation 102:1893–1900

    Google Scholar 

  4. Scandinavian Simvastatin Survival Study (4S) (1994) Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: Lancet 344:1383–1389

    Google Scholar 

  5. Sever PS, Dahlof B, Poulter NR, Wedel H, Beevers G, Caulfield M, Collins R, Kjeldsen SE, Kristinsson A, McInnes GT, Mehlsen J, Nieminen M, O’Brien E, Ostergren J (2003) Prevention of coronary and stroke events with atorvastatin in hypertensive patients who have average or lower-than-average cholesterol concentrations, in the Anglo-Scandinavian Cardiac Outcomes Trial-Lipid Lowering Arm (ASCOT-LLA): a multicentre randomised controlled trial. Lancet 361:1149–1158

    Article  CAS  PubMed  Google Scholar 

  6. Shepherd J, Cobbe SM, Ford I, Isles CG, Lrimer AR, MacFarlane PW, McKillop JH, Packard CJ (1995) Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. West of Scotland Coronary Prevention Study Group. N Engl J Med 333:1301–1307

    Article  CAS  PubMed  Google Scholar 

  7. Laufs U, Liao JK, Böhm M (2004) Lipid management with statins. The lower the better? Z Kardiol 93:3–9

    Google Scholar 

  8. Ridker PM, Rifai N, Clearfield M, Downs JR, Weis SE, Miles JS, Gotto AM Jr (2001) Measurement of C-reactive protein for the targeting of statin therapy in the primary prevention of acute coronary events. N Engl J Med 344:1959–1965

    Article  CAS  PubMed  Google Scholar 

  9. Wassmann S, Laufs U, Baumer AT, Müller K, Konkol C, Sauer H, Böhm M, Nickenig G (2001) Inhibition of geranylgeranylation reduces angiotensin II-mediated free radical production in vascular smooth muscle cells: involvement of angiotensin AT1 receptor expression and rac1 GTPase. Mol Pharmacol 59:646–654

    Google Scholar 

  10. Laufs U, La Fata V, Plutzky J, Liao JK (1998) Upregulation of endothelial nitric oxide synthase by HMG CoA reductase ihibitors. Circulation 97:1129–1135

    Google Scholar 

  11. Aikawa M, Rabkin E, Sugiyama S et al (2001) An HMG-CoA reductase inhibitor, cerivastatin, suppresses growth of macrophages expressing matrix metalloproteinases and tissue factor in vivo and in vitro. Circulation 103:276–283

    Google Scholar 

  12. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rutten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    Article  CAS  PubMed  Google Scholar 

  13. Werner N, Priller J, Laufs U, Endres M, Böhm M, Dirnagl U, Nickenig G (2002) Bone Marrow-derived progenitor cells modulate vascular reendothelialization and neointimal formation. Effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Thromb Vasc Biol 22:1567–1572

    Article  CAS  PubMed  Google Scholar 

  14. Werner N, Junk S, Laufs U, Links A, Walenta K, Böhm M, Nickenig G (2003) Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res 93:e17–e24

    Google Scholar 

  15. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–430

    Article  CAS  PubMed  Google Scholar 

  16. Werner N, Nickenig G, Laufs U (2002) Pleiotropic effects of HMGCoA reductase inhibitors. Basic Res Cardiol 97:105–116

    Google Scholar 

  17. Greenberg S, Frishman WH (1990) Co-Enzyme Q10: A new drug for cardiovascular disease. J Clin Pharmacol 30:596–608

    Google Scholar 

  18. Vasan RS, Levy D (1996) The role of hypertension in the pathogenesis of heart failure. A clinical mechanistic overview. Arch Intern Med 156:1789–1796

    Google Scholar 

  19. Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    CAS  PubMed  Google Scholar 

  20. Clerk A, Sugden HP (2000) Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 86:1019–1023

    Google Scholar 

  21. Sussman MA, Welch S, Walker A (2000) Altered focal adhesion regulation correlates with cardiomyopathy in mice expressing constitutively active rac1. J Clin Invest 105:875–886

    Google Scholar 

  22. Sah VP et al (1999) Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J Clin Invest 103:1627–1634

    Google Scholar 

  23. Pracyk JB et al (1998) A requirement for the rac1 GTPase in the signal transduction pathway leading to cardiac myocyte hypertrophy. J Clin Invest 102:929–937

    Google Scholar 

  24. Sah VP, Hoshijima M, Chien KR, Brown JH (1996) Rho is required for Galphaq and alpha1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem 271:31185–31190

    Google Scholar 

  25. Laufs U, Kilter H, Konkol C, Wassmann S, Böhm M, Nickenig G (2002) Impact of HMG CoA reductase inhibition on small GTPases in the heart. Cardiovasc Res 53:911–920

    Google Scholar 

  26. Takemoto M, Node K, Nakagami H, Liao Y, Grimm M, Takemoto Y, Kitakaze M, Liao J (2001) Statins as antioxidant therapy for preventing cardiac myocyte hypertrophy. J Clin Invest 108:1429–1437

    Google Scholar 

  27. Bauersachs J, Galuppo P, Fraccarollo D et al (2001) Improvement of left ventricular remodeling and function by hydroxymethylglutaryl coenzyme a reductase inhibition with cerivastatin in rats with heart failure after myocardial infarction. Circulation 104:982–985

    Google Scholar 

  28. Patel R, Nagueh S, Tsybouleva N, Abdellatif M, Lutucuta S, Kopelen H, Quinones M, Zoghbi W, Entman M, Roberts R, Marian AJ (2001) Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation104:r27–r34

    Google Scholar 

  29. Oi S, Haneda T, Osaki J et al (1999) Lovastatin prevents angiotensin II-induced cardiac hypertrophy in cultured neonatal rat heart cells. Eur J Pharmacol 376:139–148

    Google Scholar 

  30. Luo JD, Zhang WW, Zhang GP et al (1999) Simvastatin inhibits cardiac hypertrophy and angiotensin-converting enzyme activity in rats with aortic stenosis. Clin Exp Pharmacol Physiol 26:903–908

    Google Scholar 

  31. Dechend R, Fiebeler A, Park JK et al (2001) Amelioration of angiotensin II-induced cardiac injury by a 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibitor. Circulation 104:576–581

    Google Scholar 

  32. Belch JJ, Bridges Ab, Scott N et al (1991) Oxygen free radicals and congestive heart failure. Br Heart J 65:245–248

    Google Scholar 

  33. Mallat Z, Philip I, Lebret M et al (1998) Elevated levels of 8-iso-prostaglandin F2 in pericardial fluid of patients with heart failure: a potential role for in vivo oxidant stress in ventricular dilatation and progression to heart failure. Circulation 97:1536–1539

    Google Scholar 

  34. McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14:1493–1498

    Google Scholar 

  35. McMurray J, McLay J, Chopra M, Bridges A, Belch JJ (1990) Evidence for enhanced free radical activity in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol 65:1261–1262

    Google Scholar 

  36. Dhalla NS, Temsah RM, Netticadan T (2000) Role of oxidative stress in cardiovascular diseases. J Hypertens 18:655–673

    Article  CAS  PubMed  Google Scholar 

  37. Kinugawa S, Tsutsui H, Hayshidani S et al (2000) Treatment with diethylthiourea prevents left ventricular remodeling and failure after experimental myocardial infarction in mice: role of oxidative stress. Circ Res 87:392–398

    Google Scholar 

  38. Siwik DA, Tzortzis JD, Pimental DR et al (1999) Inhibition of copper-zinc superoxide dismutase induces cell growth, hypertrophic phenotype, and apoptosis in neonatal rat cardiac myocytes in vitro. Circ Res 85:147–153

    Google Scholar 

  39. Aikawa R, Nawano M, Gu Yet al (2000) Insulin prevents cardiomyocytes from oxidative stress-induced apoptosis through activation of PI3 kinase/Akt. Circulation 102:2873–2879

    Google Scholar 

  40. Bendall JK, Cave AC, Heymes C et al (2002) Pivotal role of a gp91 (phox)-containig NADPH oxidase in angiotensin II-induced cardiac hypertrophy in mice. Circulation 105:293–296

    CAS  PubMed  Google Scholar 

  41. Li JM, Gall NP, Grieve DJ et al (2002) Activation of NADPH oxidase during progression of cardiac hypertrophy to failure. Hypertension 40:477–484

    Google Scholar 

  42. Bokoch GM, Diebold BA (2002) Durrent molecular models for NADPH oxidase regulation by Rac GTPase. Blood 100:2692–2696

    Article  CAS  PubMed  Google Scholar 

  43. Maack C, Kartes T, Kilter H, Schäfers H-J, Nickenig G, Böhm M, Laufs U (2003) Oxygen free radical release in human failing myocardium is associated with increased activity of Rac1-GTPase and represents a target of statin treatment. Circulation 108:1567–1574

    Google Scholar 

  44. Zhao G, Shen W, Xu X et al (1995) Selective impairment of vagally mediated, nitric oxide-dependent coronary vasodilation in conscious dogs after pacing-induced heart failure. Circulation 91:2655–2663

    Google Scholar 

  45. Smith CJ, Sun D, Hoegler C et al (1996) Reduced gene expression of vascular endothelial NO synthase and cyclooxygenase-1 in heart failure. Circ Res 78:58–64

    Google Scholar 

  46. Xie YW, Shen W, Zhao G et al (1996) Role for endothelium-derived nitric oxide in the modulation of canine myocardial mitochondrial respiration in vitro. Implications for the development of heart failure. Circ Res 79:381–1987

    Google Scholar 

  47. Recchia FA, McConnell PI, Bernstein RD et al (1998) Reduced nitric oxide production and altered myocardial metabolism during the decompensation of pacing-induced heart failure in the conscious dog. Circ Res 83:969–979

    Google Scholar 

  48. O’Driscoll G, Green D, Taylor RR (1997) Simvastatin, an HMG-coenzyme A reductase inhibitor, improves endothelial function with 1 month. Circulation 95:1126–1131

    Google Scholar 

  49. Laufs U, Liao JK (1998) Post-transcriptional regulation of endothelial nitric oxide synthase mRNA stability by Rho GTPase. J Biol Chem 273:24266–24271

    Google Scholar 

  50. Trochu JN, Mital S, Zhang X, Xu X, Ochoa M, Liao J, Recchia FA, Hintze T (2003) Preservation of NO production by statins in the treatment of heart failure. Cardiovasc Res 60:250–258

    Google Scholar 

  51. Kjekshus J, Pedersen RT, Olsson GA, Faergeman O, Pyörälä K (1997) The effects of simvastatin on the incidence of heart failure in patients with coronary heart disease. J Card Fail 3:249–254

    Google Scholar 

  52. Node K, Fujita M, Kitakaze M, Hori M, Liao J (2003) Short-term statin therapy improves cardiac function and symptoms in patients with idiopathic dilated cardiomyopathy. Circulation 108:1–5

    Google Scholar 

  53. Laufs U, Wassmann S, Schackmann S, Heeschen C, Böhm M, Nickenig G (2004) Beneficial effects of statins in patients with non-ischemic heart failure. Z Kardiol 93:103–108

    Google Scholar 

  54. Hognestad A, Dickstein K, Myhre E, Snapinn S, Kjekshus J (2004) Effect of combined statin and beta-blocker treatment on one-year morbidity and mortality after acute myocardial infarction associated with heart failure. Am J Cardiol 93:603–606

    Google Scholar 

  55. Rauchhaus M, Clark AL, Doehner W, Davos C, Bolger A, Sharma R, Coats AJS, Anker SD (2003) The relationship between cholesterol and survival in patients with chronic heart failure. J Am Coll Cardiol 42:1933–1940

    Google Scholar 

  56. Rauchhaus M, Coats AJS, Anker SD (2000) The endotoxin-lipoprotein hypothesis. Lancet 356:930–933

    Google Scholar 

  57. Rauchhaus M, Koloczek V, Volk H, Kemp M, Niebauer J, Francis DP, Coats AJ, Anker SD (2000) Inflammatory cytokines and the possible immunological role for lipoproteins in chronic heart failure. Int J Cardiol 76:125–133

    Google Scholar 

  58. Niebauer J, Volk HD, Kemp M et al (1999) Endotoxin and immune activation in chronic heart failure: a prospective cohort study. Lancet 353:1838–1942

    Google Scholar 

  59. Richartz BM, Radovancevic B, Frazier OH et al (1998) Low serum cholesterol levels predict high perioperative mortality in patients supported by a left-ventricular assist system. Cardiology 89:184–188

    Google Scholar 

  60. Vredevoe DL, Woo MA, Doering LV et al (1998) Skin test anergy in advanced chronic heart failure scondary to either ischemic or idopathic dilated cardiomyopathy. Am J Cardiol 82:323–328

    Google Scholar 

  61. Horwich TB, Hamilton MA, Maclellan WR, Fonarow GC (2002) Low serum total cholesterol is associated with marked increase in mortality in advanced heart failure. J Card Fail 8:216–224

    Google Scholar 

  62. Harris HW, Grunfeld C, Feingold KR et al (1990) Human very low density lipoproteins and chylomicrons can protect against endotoxin-induceddeath in mice. J Clin Invest 86:696–702

    Google Scholar 

  63. Levine DM, Parker TS, Donnely TM et al (1993) In vivo protection against endotoxin by plasma high density lipoprotein. Proc Natl Acad Sci USA 90:12040–12044

    Google Scholar 

  64. Netea MG, de Bont N, Demacker PN et al (1998) Lipoprotein(a) inhibits lipopolysaccharide-induced tumor necrosis factor alpha production by human mononuclear cells. Infect Immun 66:2365–2367

    CAS  PubMed  Google Scholar 

  65. Read TE, Grunfeld C, Kumwenda ZL et al (1995) Triglyceride-rich lipoproteins prevent septic death in rats. J Exp Med 182:267–272

    Google Scholar 

  66. Kobayashi M, Shimomura Y Suzuki H, Tanaka M, Bawm H, Ozawa T (1980) Structural effects of ubiquinones on the mitochondrial inner membrane. J Appl Biochem 2:270–279

    Google Scholar 

  67. Mortensen SA, Vadhanavikit S, Baandrup U, Folkers K (1985) Long-term coenzyme Q10 therapy: a major advance in the management of resistant myocardial failure. Drug Exp Clin Res 8:581

    Google Scholar 

  68. The SOLVD investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 325:293–302

    PubMed  Google Scholar 

  69. Tavazzi L, Tognoni G, Franzosi MG, Latini R, Maggioni AP, Marchioli R, Nicolosi GL, Porcu M, on behalf of the GISSI-HF investigators (2003) Rationale and design of the GISSI heart failure trial: a large trial to assess the effects of n-3 polyunsaturated fatty acids and rosuvastatin in symptomatic congestive heart failure. Eur J Heart Fail 6:636–641

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Böhm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhm, M., Hjalmarson, A., Kjekshus, J. et al. Heart failure and statins—Why do we need a clinical trial?. ZS Kardiologie 94, 223–230 (2005). https://doi.org/10.1007/s00392-005-0210-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-005-0210-9

Schlüsselwörter

Key words

Navigation