On the genesis of myocardial ischemia

Zur Genese der myokardialen Ischämie

Zusammenfassung.

Etwa drei Viertel der myokardialen Ischämien werden vom autonomen Nervensystem getriggert. Die pathognomonische Konstellation besteht dabei in einer Kombination aus weitgehender Blockierung der tonischen Vagusaktivität in Verbindung mit gesteigerter sympathischer Aktivität. Die Reduktion der tonischen Vagusaktivität, charakteristisch für die ischämische Herzkrankheit, wie auch die akuten Blockaden der vagalen Herzimpulse, die zur Ischämieauslösung führen, stehen in keiner Abhängigkeit von koronaren Gefäßprozessen. In dieser Arbeit werden die pathophysiologischen Schritte diskutiert, die von der sympatho-vagalen Dysbalance in die myokardiale Ischämie führen. Eine hochgradige Steigerung der aeroben Glykolyse im Myokard als Folge der autonomen Dysbalance kommt dabei besondere Bedeutung zu.

Summary.

About three quarters of myocardial ischemic events are triggered by the autonomic nervous system. The pathognomonic constellation is a combination of an almost complete withdrawal of tonic vagal activity with increased sympathetic activity. The reduction of tonic vagal activity, which is characteristic for ischemic heart disease, and the acute withdrawal of vagal drive preceding the onset of ischemia are not dependent on coronary artery disease. In this paper, the pathophysiological steps that lead from sympathetic-parasympathetic imbalance to myocardial ischemia shall be discussed. A considerable increase of aerobic glycolysis within the myocardium as a result of the autonomic imbalance is of special importance in this process.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Airaksinen K, Käheimo MJ, Linnaluoto MK, Niemelä M, Takkunen JT (1987) Impaired vagal heart rate control in coronary artery disease. Br Heart J 58:592–597

    CAS  PubMed  Google Scholar 

  2. 2.

    Airaksinen KEJ, Ikäheimo J, Huikuri HV, Linnaluoto MK, Takkunen TJ (1993) Responses of heart rate variability to coronary occlusion during coronary angioplasty. Am J Cardiol 72:1026–1030

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Akiyama T, Yamazaki T, Ninomiya I (1994) In vivo detection of endogenous acetylcholine release in cat ventricles. Am J Physiol 266:H854–H860

    CAS  PubMed  Google Scholar 

  4. 4.

    Ambrose JA, Tannenbaum M, Alexopoulos D, Hjemdahl-Monsen CE, Leavy J, Weiss M, Borrico S, Gorlin R, Fuster V (1988) Angiographic progression of coronary artery disease and the development of myocardial infarction. J Am Coll Cardiol 12:56–62

    CAS  PubMed  Google Scholar 

  5. 5.

    Aono T, Sato T, Mishinaga M, Kawamoto A, Ozawa T (1996) Power Spectral analysis of spontaneous blood pressure and heart rate variability in elderly hypertensives. Hypertension Res 19:9–16

    CAS  Google Scholar 

  6. 6.

    Arai Y, Saul P, Albrecht P, Hartley H, Lilly LS, Cohen RJ, Colucci WS (1989) Modulation of cardiac autonomic activity during and immediately after exercise. Am J Physiol 256:H132–H141

    CAS  PubMed  Google Scholar 

  7. 7.

    Baroldi G (1975) Different morphological types of myocardial cell death in man. In: Fleckenstein A, Rona G (ed) Recent advances in studies on cardiac structure and metabolism, Vol 6. Pathophysiology and morphology of myocardial cell alteration. University Park Press, Baltimore, pp 383–397

  8. 8.

    Bazhenova OV, Porges SW (1997) Vagal reactivity and affective adjustment in infants. Convergent response systems. Ann NY Acad Sci 807:469–471

    CAS  PubMed  Google Scholar 

  9. 9.

    Bergemann C, Loken C, Becker C, Graf B, Hamidizadeh M, Fischer Y (2001) Inhibition of glucose transport by cyclic GMP in cardiomyocytes. Life Sciences 69:1391–1406

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Bernaradi L, Ricordi L, Lazzari P, Sold† P, Calciati A, Ferrari MR, Vandea I, Finardi G, Fratino P (1992) Impaired circadian modulation of sympathovagal activity in diabetes. Circulation 86:1443–1452

    PubMed  Google Scholar 

  11. 11.

    Bigger JT, Kleiger RE, Fleiss JL, Rolnitzky LM, Stinman RC, Miller JP (1988) The multicenter post-infarction research group. Components of heart rate variability measured during healing of acute myocardial infarction. Am J Cardiol 61:208–215

    Article  PubMed  Google Scholar 

  12. 12.

    Bigger JT, Hoover CA, Steinman RC, Rolnitzky LM, Fleiss JL, and the Multicenter Study of Silent Myocardial Ischemia Investigators (1990) Autonomic nervous system activity during myocardial ischemia in man estimated by power spectral analysis of heart period variability. Am J Cardiol 66:497–498

    Article  PubMed  Google Scholar 

  13. 13.

    Bigger JT, Fleiss JL, Rolnitzky LM, Steinman RC, Schneider WJ (1991) Time course of recovery of heart period variability after myocardial infarction. J Am Coll Cardiol 18:1643–1649

    PubMed  Google Scholar 

  14. 14.

    Bigger JT, Fleiss JL, Steinman RC, Rolnitzky LM, Kleiger RE, Rottman, N (1992) Frequency domain measures of heart period variability andmortality after myocardial infarction. Circulation 85:164–171

    PubMed  Google Scholar 

  15. 15.

    Bigger JT, Fleiss JL, Steinman C, Rolnitzky M, Schneider WJ, Stein PK (1995) RR variability in healthy, middle-aged persons compared with patients with chronic coronary heart disease or recent acute myovcardial infarction. Circulation 91:1936–1943

    PubMed  Google Scholar 

  16. 16.

    Blomquist TM, Priola DV, Romero AM (1987) Source of intrinsic innervation of canine ventricles: a functional study. Am J Physiol 252:H638–H644

    CAS  PubMed  Google Scholar 

  17. 17.

    Blukoo-Allotey JA, Vincent NH, Ellis S (1969) Interactions of acetylcholine and epinephrine on contractility, glykogen and lphosphorylase activity of isolated mammalian hearts. J Pharmacol Exp Ther 170:27–36

    CAS  PubMed  Google Scholar 

  18. 18.

    Boutcher SH, Stein P (1995) Association between heart rate variability and training response in sedentary middle-aged men. Eur J Appl Physiol 70:75–80

    CAS  Google Scholar 

  19. 19.

    Breuer H-W M, Skyschally A, Schulz R, Martin C, Wehr M, Heusch G (1993) Heart rate variability and circulating catecholamine concentrations during steady state exercise in healthy volunteers. Br Heart J 70:144–149

    CAS  PubMed  Google Scholar 

  20. 20.

    Brody S, Veit R, Rau H (2000) A preliminary report relatingfrequency of vaginal intercourse to heart rate variability, Valsalva ratio, blood pressure, and cohabitation status. Biol Psychol 52:251–257

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Brouwer J, Portegies JM, Haaksma J, vd Ven LLM, Viersma JW, Lie KI (1994) Heart rate variability before, during and after episodes of silent myocardial ischemia. J Am Coll Cardiol 320A

  22. 22.

    Brown OM (1976) Cat heart acetylcholine: structural proof and distribution. Am J Physiol 231:781–785

    CAS  PubMed  Google Scholar 

  23. 23.

    Brown BG, Gallery CA, Badger RS, Kennedy JW, Mathey D, Bolson EL, Dodge HT (1986) Incomplete lysis of thrombus in the moderate underlying atherosclerotic lesion during intracoronary infusion of streptokinase for acute myocardial infarction: quantitative angiographic observations. Circulation 73:653–661

    CAS  PubMed  Google Scholar 

  24. 24.

    Burger AJ, Hamer AW, Weinrauch LA, D’Elia JA (1989) Relation of heart rate variability and serum lipoproteins in type 1. Diabetes mellitus and chronic stable angina pectoris. Am J Cardiol 81:945–949

    Article  Google Scholar 

  25. 25.

    Burger AJ, Kamalesh M (1999) Effect of beta-adrenergic blocker therapy on the circadian rhythm of heart rate variability in patients with chronic stable angina pectoris. Am J Cardiol 83:596–598

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Camici P, Araujo L, Spinks T, Lammertsma AA, Jones T, Maseri A (1986) Myocardial glucose utilization in ischaemic heart disease: preliminary results with F18-fluorodeoxyglucose and positron emission tomography. Eur Heart J 7(Suppl C):19–23

    Google Scholar 

  27. 27.

    Chatterjee K, Matloff JM, Swan HJC, Ganz W, Kaushik VS, Magnusson P, Henis MM, Forrester JS (1975) Abnormal regional metabolism and mechanical function in patients with ischemic heart disease. Circulation 52:390–399

    CAS  PubMed  Google Scholar 

  28. 28.

    Cohen LS, Elliott WC, Klein MD, Gorlin R (1966) Coronary heart disease. Clinical, cinearteriographic and metabolic correlations. Am J Cardiol 17:153–168

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Cole PM, Zahn-Waxler C, Fox NA, Usher BA, Welsh JD (1996) Individual differences in emotion regulation and behavior problems in preschool children. J Abnormal Psychology 105:518–529

    Article  CAS  Google Scholar 

  30. 30.

    Collins-Nakai RL, Noseworthy D, Lopaschuk GD (1994) Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Physiol 267:H1862–H1871

    CAS  PubMed  Google Scholar 

  31. 31.

    Cook Jr, Bigger JT, Kleiger RE, Fleiss JL, Steinmann RC, Rolnitzky LM (1991) Effect of atenolol and diltiazem on heart period variability in normal persons. J Am Coll Cardiol 17:480–484

    CAS  PubMed  Google Scholar 

  32. 32.

    Cripps TR, Malik M, Farrell TG, Camm AJ (1991) Prognostic value of reduced heart rate variability after myocardial infarction: clinical evaluation of a new analysis method. Br Heart J 65:14–19

    CAS  PubMed  Google Scholar 

  33. 33.

    Daubert JC, Feuillu A, Pony JC, Gouffault J (1975) Etude comparative des criteres metaboliques de l’ischemie myocardique aigue en clinique humaine. Arch Mal Coeur 68:599–605

    CAS  PubMed  Google Scholar 

  34. 34.

    DeGangi, G, DiPietro J, Greenspan SI, Porges SW (1991) Psychophysiological characteristics of the regulatory disordered infant. Infant Behavior and Development 14:37–50

    Article  Google Scholar 

  35. 35.

    DeGeest H, Levy MN, Zieske H, Lipman RI (1965) Depression of ventricular contractility by stimulation of the vagus nerves. Circulation Res 17:222–235

    CAS  PubMed  Google Scholar 

  36. 36.

    Depre C, Ponchaut S, Deprez J, Maisin L, Hue L (1998) Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart. J Clin Invest 101:390–397

    CAS  PubMed  Google Scholar 

  37. 37.

    Depre C, Gaussin V, Ponchaut S, Fischer Y, Vanoverschelde J-L, Hue L (1998) Inhibition of myocardial glucose uptake by cGMP. Am J Physiol 274:H1443–H1449

    CAS  PubMed  Google Scholar 

  38. 38.

    Dilaveris PE, Zervopoulos GA, Psomadaki ZD, Michaelides AP, Gialofos JE, Toutouzas PK (1996) Assessment of time domain and spectral components of heart rate variability immediately before ischemic ST segment depression episodes. PACE 19:1337–1345

    CAS  PubMed  Google Scholar 

  39. 39.

    Dixon EM, Kamatah MV, McCartney N, Fallen EL (1992) Neural regulation of heart rate variability in endurance athletes and sedentary controls. Cardiovasc Res 26:713–719

    CAS  PubMed  Google Scholar 

  40. 40.

    Engel S, Yan L, Weiss H, Scholz P (2001) Negative functional effects of cGMP mediated by cGMP protein kinase are reduced in T4 cardiac myocytes. Eur J Pharmacol 42:23–30

    Article  Google Scholar 

  41. 41.

    Farrell TG, Bashir Y, Cripps T, Malik M, Poloniecki J, Bennett ED, Warad DE, Camm AJ (1991) Risk stratification for arrhythmic events in postinfarction patients based on heart rate variability, ambulatory electrocardiographic variables and the signal-averaged electrocardiogram. J Am Coll Cardiol 18:687–697

    CAS  PubMed  Google Scholar 

  42. 42.

    Fawcet DW, Selby CC (1958) Observations on the fine structure of the turtle atrium. J Biophys Biochem Cytol 4:63–71

    PubMed  Google Scholar 

  43. 43.

    Fields JZ, Roeske WR Moskin E, Yamamura HI (1978) Cardiac muscarinic cholinergic receptors. J Biol Chem 253:3251–3258

    CAS  PubMed  Google Scholar 

  44. 44.

    Gardner RM, Allen DO (1976) Effect of acetylcholine on glykogen phosphorylase activity and cyclic nucleotide content in isolated perfused rat hearts. J Cyclic Nucl Res 2:171–178

    CAS  Google Scholar 

  45. 45.

    George WJ, Polson JB, O’Toole AG, Goldberg ND (1970) Elevation of guanosine 3′: 5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403

    CAS  PubMed  Google Scholar 

  46. 46.

    George WJ, Ignarro LJ, Paddock RJ, White L, Kadowitz PJ (1975) Oppositional effects of acetylcholine and isoproterenol on isometric tension and cyclic nucleotide concentrations in rabbit atria. J Cyclic Nucl Res 1:339–347

    CAS  Google Scholar 

  47. 47.

    Fox NA (1989) Psychophysiological correlates of emotional reactivity during the first year of life. Developmental Psychology 25:364–372

    Article  Google Scholar 

  48. 48.

    Goldberg ND, O’dea RF, Haddox MK (1973) Cyclic GMP. Adv Cyclic Nucleotide Res 3:155–223

    CAS  PubMed  Google Scholar 

  49. 49.

    Goldberg ND, Haddox MK, Nicol SE, Glass DB, Sanford CH, Kuehl FA Estensen R (1975) Biologic regulation through opposing influences of cyclic GMP and cyclic AMP: the Yin Yang hypothesis. Adv Cyclic Nucleotides REs 5:307–330

    CAS  Google Scholar 

  50. 50.

    Goldsmith RL, Bigger T, Steinman RC, Fleiss JL (1992) Comparison of 24-hour parasympathetic activity in endurance-trained and untrained young men. J Am Coll Cardiol 20:552–558

    CAS  PubMed  Google Scholar 

  51. 51.

    Gollwitzer-Meier K (1942) Reaktionsänderungen im Herzen unter dem Einfluss von Adrenalin. Pflügers Arch 245:575–583

    CAS  Google Scholar 

  52. 52.

    Gong GX, Weiss HR, Tse J, Scholz PM (1997) Cyclic GMP decreases cardiac myocyte oxygen consumption to a greater extent under conditions of increased metabolism. J Cardiovasc Pharmacol 30:537–543

    Article  CAS  PubMed  Google Scholar 

  53. 53.

    Gong GX, Straznicka M, Weiss HR, Tse J, Scholz PM (1999) Altered effects of acetylcholine on cyclic AMP and GMP induced changes in O2 consumption of hypertrophic dog cardiac myocytes. J Auton Pharmacol 19:19–28

    CAS  PubMed  Google Scholar 

  54. 54.

    Gorlin R (1972) Assessment of hypoxia in the human heart. Cardiology 57:24–34

    CAS  PubMed  Google Scholar 

  55. 55.

    Goseki Y, Matsubara T, Takahashi N, Takeuchi T, Ibukiyama C (1994) Heart rate variability before the occurrence of silent myocardial ischemia during ambulatory monitoring. Am J Cardiol 73:845–849

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Gottman JM, Katz LF, Hooven C (1996) Parental meta-emotion philosophy and the emotional life of families: theoretical models and preliminary data. J Family Psychology 3:243–268

    Google Scholar 

  57. 57.

    Gundersen HJG, Neubauer B (1977) A long term diabetic autonomic nervous abnormality. Reduced variations in resting heart rate measured by a simple and sensitive method. Diabetologia 13:137–140

    CAS  PubMed  Google Scholar 

  58. 58.

    Harrison LL, Leeper JD, Yoon M (1990) Effects of early parent touch on preterm infants’ heart rates and arterial oxygen saturation levels. J Advanced Nursing 15:877–885

    CAS  Google Scholar 

  59. 59.

    Harrison SM, Frampton JE, McCall E, Boyett MR, Orchard CH (1992) Contraction and intracellular Ca2 +, Na+, and H+ during acidosis in rat ventricular myocytes. Am J Physiol 262:Ca348–C357

    Google Scholar 

  60. 60.

    Hartikainen JE, Malik M, Staunton A, Poloniecki J, Camm AJ (1996) Distinction between arrhythmic and nonarrhythmic death after acute myovcardial infarction based on heart rate variability, signal-averaged electrocardiogram, ventricular arrhythmias and left ventricular ejection fraction. J Am Coll Cardiol 28:296–304

    Article  CAS  PubMed  Google Scholar 

  61. 61.

    Hayano J, Sakakibara Y, Yamada M, Ohte N, Fujinami R, Yokoyama K, Watanabe Y, Takata K (1990) Decreased magnitude of heart rate spectral components in coronary artery disease. Its relation to angiographic severity. Circulation 81:1217–1224

    CAS  PubMed  Google Scholar 

  62. 62.

    Hayano J, Yamada M, Sakakibara Y, Fujinami T, Yokoyama K, Watanabe Y, Takata K (1990) Short- and long-term effects of cigarette smoking on heart rate variability. Am J Cardiol 65:84–88

    Article  CAS  PubMed  Google Scholar 

  63. 63.

    Hayano J, Yamada A, Mukai S, Sakakibara Y, Yamada M, Ohte N, Hashimoto T, Fujinami T, Takata K (1991) Severity of coronary atherosclerosis correlates with the respiratory component of heart rate variability. Am Heart J 121:1070–1079

    Article  CAS  PubMed  Google Scholar 

  64. 64.

    Helfant RH, Forrester JS, Hampton JR, Haft JI, Kemp HG, Gorlin R (1970) Coronary heart disease. Differential hemodynamic, metabolic, and electrocardiographic effects in subjects with and without angina pectoris during atrial pacing. Circulation 42:601–610

    CAS  PubMed  Google Scholar 

  65. 65.

    Hollenberg M, Carriere S, Barger AC (1965) Biphasic action of acetylcholine on ventricular myocardium. Circulation Res 16:527–536

    CAS  PubMed  Google Scholar 

  66. 66.

    Horsten M, Ericson M, Perski A, Wamala SP, Schenk-Gustafsson K, Orth-Gomér K (1999) Psychosocial factors and heart rate variability in healthy women. Psychosom Med 61:49–57

    CAS  PubMed  Google Scholar 

  67. 67.

    Huang J, Leatham E, Redwood S, Yiö G, Chen L, Kaski C, Malik M (1994) Heart rate variability is depressed in patients with unstable angina. J Am Coll Cardiol Abstracts:196A

    Google Scholar 

  68. 68.

    Huang J, Sopher M, Leatham E, Redwood S, Camm J, Kaski JC (1995) Heart rate variability depression in patients with unstable angina. Am Heart J 130:772–779

    Article  CAS  PubMed  Google Scholar 

  69. 69.

    Huikuri HV, Niemelä MJ, Ojala S, Rantala A, Ikäheimo MJ, Airaksinen J (1994) Circadian rhythms of frequency domain measures of heart rate variability in healthy subjects and patients with coronary artery disease. Circulation 90:121–126

    CAS  PubMed  Google Scholar 

  70. 70.

    Huikuri HV, Ylitalo A, Pikkujamsa SM, Ikaheimo MJ, Airaksinen KE, Rantala Ao, Kesaniemi YA (1996) Heart rate variability in systemic hypertension. Am J Cardiol 77:1073–1077

    Article  CAS  PubMed  Google Scholar 

  71. 71.

    Katz AM (1971/72) Effects of ischemia on the cardiac contractile proteins. Cardiology 56:276–283

    CAS  PubMed  Google Scholar 

  72. 72.

    Kawada T, Yamazaki T, Akiyama T, Sato T, Shishido T, Inagaki M, Takaki H, Sugimachi M, Sunagawa K (2000) Differential acetylcholine release mechanism in the ischemic and nonischemic myocardium. J Mol Cell Cardiol 32:405–414

    Article  CAS  PubMed  Google Scholar 

  73. 73.

    Kawada T, Yamazaki T, Akiyama T, Inagaki M, Shishido T, Zheng C, Yanagiya Y, Sugimachi M Sunagawa K (2001) Vagosympathetic interactions in ischemia-induced myocardial norepinephrine and acetylcholine release. Am J Physiol 280:H216–H221

    CAS  Google Scholar 

  74. 74.

    Kawada T, Yamazaki T, Akiyama T, Shishido T, Inagaki M, Uemura K, Miyamoto T, Sugimachi M, Takaki H, Sunagawa K (2001) In vivo assessment of acetylcholine-releasing function at cardiac vagal nerve terminals. Am J Physiol 281:H139–H145

    CAS  Google Scholar 

  75. 75.

    Kent KM, Epstein SE, Cooper T, Jacobowitz DM (1974) Cholinergic innervation of the canine and human ventricular conducting system. Anatomic and electrophysiologic correlations. 50:948–955

    CAS  Google Scholar 

  76. 76.

    Kleiger RE, Miller JPh, Bigger Th, Moss AJ, Multicenter Postinfarction Research Group (1987) Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am J Cardiol 59:256–262

    Article  CAS  PubMed  Google Scholar 

  77. 77.

    Kochiadakis GE, Rombola AT, Kanoupakis EM, Zuridakis EG, Skalidis EI, Vardas PE (1996) Effect of transdermal scopolamine on heart rate variability in patients with severe coronary heart disease. PACE 19:1867–1871

    CAS  PubMed  Google Scholar 

  78. 78.

    Kochiadakis GE, Marketou ME, Igoumenidis NE, Simantirakis EN, Parthenakis FI, Manios EG, Vardas PE (2000) Autonomic nervous system activity before and during episodes of myocardial ischemia in patients with stable coronary artery disease during daily life. PACE 23:2030–2039

    CAS  PubMed  Google Scholar 

  79. 79.

    Kohara K, Nishida W, Maguchi M, Hiwada K (1995) Autonoic nervous function in non-dipper essential hypertensive subjects: evaluation by power spectral analysis of heart rate variability. Hypertension 226:808–814

    Google Scholar 

  80. 80.

    Kohara K, Igase M, Maguchi M, Fukuoka T, Kitami Y, Hiwada K (1996) Autonomic nervous function in essential hypertension in the elderly: evaluation by power spectral analysis of heart rate variability. Am J Hypertension 9:1084–1089

    Article  CAS  Google Scholar 

  81. 81.

    Kop WJ, Verdino RJ, Gottdiener JS, O’Leary ST, Merz CNB, Krantz DS (2001) Changes in heart rate and heart rate variability before ambulatory ischemic events. J Am Coll Cardiol 38:742–749

    Article  CAS  PubMed  Google Scholar 

  82. 82.

    Kristal-Boneh E, Froom P, Harari G, Malik M, Ribak J (2000) Summerwinter differences in 24 h variabilityof heart rate. J Cardiovasc Risk 7:141–146

    CAS  PubMed  Google Scholar 

  83. 83.

    Kuo JF, Lee TP, Reyes PL, Walton KG, Donnelly TE, Greengard P (1972) Cyclic nucleotide-dependent protein kinases. J Biol Chem 247:16–22

    CAS  PubMed  Google Scholar 

  84. 84.

    Lanza G, Pedrotti P, Rebuzzi G, Pasceri V, Quaranta G, Maseri A (1997) Usefulness of the addition of heart rate variability to holter monitoring in predicting in-hospital cardiac events in patients with unstable angina pectoris. Am J Cardiol 80:263–267

    Article  CAS  PubMed  Google Scholar 

  85. 85.

    Lee TP, Kuo JF, Greengard P (1972) Role of muscarinic receptors in regulation of guanosine 3′: 5′-cyclic monophosphate content in mammalian brain, heart muscle, and intestinal smooth muscle. Proc Natl Acad Sci USA 69:3287–3291

    CAS  PubMed  Google Scholar 

  86. 86.

    Leone R, Weiss HR, Scholz PM (1998) Positive functional effects of milrinone and methylene blue are not additive in control of hypertrophic dog hearts. J Surg Res 77:23–28

    Article  CAS  PubMed  Google Scholar 

  87. 87.

    Levy MN, Ng M, Martin P, Zieske H (1966) Sympathetic and parasympathetic interactions upon the left ventricle of the dog. Circulation Res 19:5–10

    Google Scholar 

  88. 88.

    Levy MN (1984) Cardiac sympathetic-parasympathetic interactions. Federation Proc 43:2598–2602

    CAS  Google Scholar 

  89. 89.

    Liao D, Cai J, Rosamond WD, Barnes RW, Hutchinson RG, Whitsel EA, Rautaharju P, Heiss G (1997) Cardiac autonomic function and incident coronary heart disease: a population-based case-cohort study. The ARIC Study. Am J Epidemiol 145:696–706

    CAS  PubMed  Google Scholar 

  90. 90.

    Little WC, Constantinescu M, Applegate RJ, Kutcher MA, Burrows MT, Kahl FR, Santamore WP (1988) Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease? Circulation 78:1157–1166

    CAS  PubMed  Google Scholar 

  91. 91.

    Löffelholz K, Pappano AJ (1985) The parasympathetic neuroeffector junction of the heart. Parmacol Rev 37:1–24

    Google Scholar 

  92. 92.

    Lombardi F, Torzillo D, Sandrone G (1992) Beta-blocking effect of propafenone based on spectral analysis of heart rate variability. Am J Cardiol 70:1028–1034

    Article  CAS  PubMed  Google Scholar 

  93. 93.

    Loricchio ML, Di Clemente D, Saccone V, Ventöuri P, Borghi AL, Bugiardini R (1994) Prognostic value of heart rate variability in unstable angina. J Am Coll Cardiol 197A (Abstracts)

  94. 94.

    Lorkovic H (1966) Influence of changes in pH on the mechanical activity of cardiac muscle. Circulation Res 19:711–720

    CAS  PubMed  Google Scholar 

  95. 95.

    Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P (1986) Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315:1046–1051

    CAS  PubMed  Google Scholar 

  96. 96.

    Mäkikallio TH, Ristimäe T, Airaksinen KEJ, Peng CK, Goldberger AL, Huikuri HV (1998) Heart rate dynamics in patients with stable angina pectoris and utility of fractal and complexity measures. Am J Cardiol 81:27–31

    Article  PubMed  Google Scholar 

  97. 97.

    Malfatto G, Facchini M, Bragato R, Branzi G, Sala L, Leonetti G (1996) Short and long term effects of exercise training on the tonic autonomic modulation of heart rate variability after myocardial infarction. Eur Heart J 17:532–538

    CAS  PubMed  Google Scholar 

  98. 98.

    McCraty R, Atkinson M, Tiller WA, Watkins AD (1995) The effects of emotions on short-term power spectrum analysis of heart rate variability. Am J Cardiol 76:1089–1093

    Article  CAS  PubMed  Google Scholar 

  99. 99.

    Meredith IT, Yeung AC, Weidinger FF (1993) Role of impaired endothelium-dependent vasodilation in ischemic manifestations of coronary artery disease. Circulation 87:V56–V66

    Google Scholar 

  100. 100.

    Minami J, Ishimitsu T, Matsuoka H (1993) Effects of smoking cessation on blood pressure and heart rate variability in habitual smokers. Hypertension 33(part II):586–590

    Google Scholar 

  101. 101.

    Miwa K, Igawa A, Miyagi Y, Nakagawa K, Inoue H (1998) Alterations of autonomic nervous activity preceding nocturnal variant angina: sympathetic augmentation with parasympathetic impairment. Am Heart J 135:762–771

    CAS  PubMed  Google Scholar 

  102. 102.

    Murray A, Ewing DJ, CAmpbell JW, Neilson JMM, Clarke BF (1975) RR interval variations in young male diabetics. Br Heart J 37:882–885

    CAS  PubMed  Google Scholar 

  103. 103.

    Myrtek M, Weber D, Brügner G, Müller W (1996) Occupational stress and strain of female students: results of physiological, behavioral, and psychological monitoring. Biol Psychology 42:379–391

    Article  CAS  Google Scholar 

  104. 104.

    Naim KL, Rabindranauth, P, Weiss HR, Tse J, Leone RJ, Scholz PM (1998) Positive inotropy due to lowering cyclic GMP is also mediated by increases in cyclic AMP in control and hypertrophic hearts. Can J Physiol Pharmacol 76:605–612

    Article  CAS  PubMed  Google Scholar 

  105. 105.

    Neill WA (1968) Myocardial hypoxia and anaerobic metabolism in coronary heart disease. Am J Cardiol 22:507–515

    Article  CAS  PubMed  Google Scholar 

  106. 106.

    Niemela MJ, Airaksinen KEJ, Huikuri HV (1994) Effect of beta-blockade on heart rate variability in patients with coronary heart disease. J Am Coll Cardiol 23:1370–1377

    CAS  PubMed  Google Scholar 

  107. 107.

    Nolan J, Flapan AD, Reid J, Neilson JM, Bloomfield P, Ewing DJ (1994) Cardiac parasympathetic activity in severe uncomplicated coronary artery disease. Br Heart J 71:515–520

    CAS  PubMed  Google Scholar 

  108. 108.

    Nolan J, Flapan AD, Goodfield NE, Prescott RJ, Bloomfield P, Neilson JMM, Ewing DJ (1996) Measurement of parasympathetic acvtivity from 24-hour ambulatory electrocardiograms and is reproducibility and sensitivity in normal subjects, patients with symptomatic myocardial ischemia, and patents with diabetes mellitus. Am J Cardiol 77:154–158

    CAS  PubMed  Google Scholar 

  109. 109.

    Odemuyiwa O, Malik M, Farrell T, Bashir Y, Poloniecki J, Camm J (1991) Comparison of the predictive characteristics of heart rate variability index and left ventricular ejection fraction for all-cause mortality, arrhythmic events and sudden death after acute myocardial infarction. Am J Cardiol 68:434–439

    Article  CAS  PubMed  Google Scholar 

  110. 110.

    Ornish D (1992) Revolution in der Herztherapie. Krenz, Stuttgart

  111. 111.

    Parker JO, Chiong MA, West RO, Case RB (1969) Sequential alterations in myocardial lactate metabolism, S-T segments, and left ventricular function during angina induced by atrial pacing. Circulation 40:113–131

    CAS  PubMed  Google Scholar 

  112. 112.

    Porges SW, Doussard-Roosevelt JA, Greenspan SI (1996) Infant regulation of the vagal “brake” predicts child behavior problems: a psychobiological model of social behavior. Developmental Psychobiology 29:697–712

    Article  CAS  PubMed  Google Scholar 

  113. 113.

    Pozzati A, Pancaldi LG, Pasquale GD, Pinelli G, Bugiardini R (1996) Transient sympathovagal imbalance triggers “ischemic” sudden death in patients undergoing electrocardiographic holter monitoring. J Am Coll Cardiol 27:847–852

    Article  CAS  PubMed  Google Scholar 

  114. 114.

    Rich MW, Saini JS, Kleiger RE, Carney RM, teVelde A, Freedland KE (1988) Correlation of heart rate variability with clinical and angiographic variables and late mortality after coronary angiography. Am J Cardiol 62:714–717

    Article  CAS  PubMed  Google Scholar 

  115. 115.

    Sacknoff, DM, Gleim GW, Stachenfeld N, Coplan NL (1994) Effect of athletic training on heart rate variability. Am Heart J 127:1275–1278

    Article  CAS  PubMed  Google Scholar 

  116. 116.

    Satoh E, Nakazato Y (1992) On the mechanism of ouabain-induced release of acetylcholine from synaptosomes. J Neurochem 58:1038–1044

    CAS  PubMed  Google Scholar 

  117. 117.

    Scheuer J, Brachfeld N (1965) Coronary insufficiency: relations between hemodynamic, electrical, and biochemical parameters. Circulation Res 18:178–189

    Google Scholar 

  118. 118.

    Schmidt PG, Grief BJ, Lund DD, Roskowski R (1978) Regional choline acetyltransferase activity in the guinea pig heart. Circulation Res 42:657–660

    PubMed  Google Scholar 

  119. 119.

    Schreiner WE (1987) Ovar. In: Siegenthaler W (ed) Klinische Pathophysiologie. Thieme, Stuttgart New York, pp 370–399

  120. 120.

    Schreiner WE (1987) Ovar. In: Siegenthaler W (ed) Klinische Pathophysiologie. Thieme, Stuttgart New York, pp 370–399

  121. 121.

    Shannon DC, Carley DW, Benson H (1987) Aging of modulation of heart rate. Am J Physiol 253:H874–H877

    CAS  PubMed  Google Scholar 

  122. 122.

    Shea TM, Watson RM, Piotrowski SF, Dermksian G, Case RB (1962) Anaerobic myocardial metabolism. Am J Physiol 203:463–469

    CAS  PubMed  Google Scholar 

  123. 123.

    Sinnreich R, Friedlander Y, Sapoznikov D, Kark JD (1998) Familial aggregation of heart rate variability based on short recordings—the kibbutzim family study. Hum Genet 103:34–40

    Article  CAS  PubMed  Google Scholar 

  124. 124.

    Sloan RP, Shapiro PA, Bagiella E, Bigger JT, Lo ES, Gorman JM (1996) Relationships between circulating catecholamines and low frequency heart period variability as indices of cardiac sympathetic activity during mental stress. Psychosom Med 58:25–31

    CAS  PubMed  Google Scholar 

  125. 125.

    Sonnenburg WK, Beavo JA (1994) Cyclic GMP and regulation of cyclic nucleotide hydrolysis. Advances in Pharmacol 26:87–114

    CAS  Google Scholar 

  126. 126.

    Spitzer KW, Bridge JHB (1992) Relationship between intracellular pH and tension development in resting ventricular muscle and myocytes. Am J Physiol 262:C316–C327

    CAS  PubMed  Google Scholar 

  127. 127.

    Sroka K, Peimann C-J, Seevers H (1997) Heart rate variability in myocardial ischemia during daily life. J Electocardiol 30:45–56

    CAS  Google Scholar 

  128. 128.

    Sroka K (1998) Vagale Depression und ischämische Herzkrankheit. Herz Kreislauf 30:216–228

    Google Scholar 

  129. 129.

    Sroka K (2002) Herzinfarkt vermeiden. Psychosozial, Gießen

  130. 130.

    Stahle A, Nordiander R, Bergfeldt L (1999) Aerobic group training improves exercise capacity and heart rate variability in elderly patients with a recent coronary event. Eur Heart J 20:1638–1646

    Article  CAS  PubMed  Google Scholar 

  131. 131.

    Stein PK, Rottman JN, Kleiger RE (1996) Effect of 21 mg transdermal nicotine patches and smoking cessation on heart rate variability. Am J Cardiol 77:701–705

    Article  CAS  PubMed  Google Scholar 

  132. 132.

    Stifter CA, Spinrad TL, Braungart-Rieker JM (1999) Toward a developmental model of child compliance: the role of emotion regulation in infancy. Child Development 70:21–32

    Article  CAS  PubMed  Google Scholar 

  133. 133.

    Straznicka M, Gong G, Tse J, Scholz PM, Weiss HR (1997) cGMP level that reduces cardiac myocyte O2 consumption is altered in renal hypertension. Am J Physiol 273:H1949–H1955

    CAS  PubMed  Google Scholar 

  134. 134.

    Takase B, Kurita A, Noritake M, Uehata A, Maruyama T, Nagayoshi H, Nishioka T, Mizuno K, Nakamura H (1992) Heart rate variability in patients with diabetes mellitus, ischemic heart disease, and congestive heart failure. J Electrocardiol 25:79–88

    Article  CAS  PubMed  Google Scholar 

  135. 135.

    Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology (1996) Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 93:1043–1065

    PubMed  Google Scholar 

  136. 136.

    Török TL (1989) Neurochemical transmission and the sodium-pump. Prog Neurobiol 32:11–76

    Article  PubMed  Google Scholar 

  137. 137.

    Tsuji H, Larson MG, Venditti FJ, Manders ES, Evans JC, Feldman CL, Levy D (1996) Impact of reduced heart rate variability on risk for cardiac events. The Framingham Heart Study. Circulation 94:2850–2855

    CAS  PubMed  Google Scholar 

  138. 138.

    Tuininga YS, Grijns HJGM, Brouwer J, van den Berg MP, Man in’t Veld AJ, Mulder G, Lie KI (1995) Evaluation of importance of central effects of atenolol and metoprolol measured by heart rate variability during mental performance tasks, physical exercise, and daily life in stable postinfarct patients. Circulation 92:3415–3423

    CAS  PubMed  Google Scholar 

  139. 139.

    van Boven, AJ, Brouwer J, Crijns JGM, Haaksma J, Lie KI (1995) Differential autonomic mechanisms underlying early morning and daytime transient myocardial ischaemia in patients with stable coronary artery disease. Br Heart J 73:134–138

    CAS  PubMed  Google Scholar 

  140. 140.

    Vardas PE, Kochiadakis GE, Manios EG, Kanoupakis EM, Zouridakis EG, Chlouverakis GI (1996) Spectral analysis of heart rate variability before and during episodes of nocturnal ischaemia in patients with extensive coronary artery disease. Eur Heart J 17:388–393

    CAS  PubMed  Google Scholar 

  141. 141.

    Watanabe AM, Besch HR (1975) Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circulation Res 37:309–317

    CAS  PubMed  Google Scholar 

  142. 142.

    Weber F, Schneider H, von Arnim T, Urbaszek W for the TIBBS Investigators Group (1998) Heart rate variability and ischaemia in patients with coronary heart disease and stable angina pectoris. Eur Heart J 19:38–50

    Google Scholar 

  143. 143.

    Weiss HR, Rodriguez E, Tse J (1995) Relationship between cGMP and myocardial O2 consumption is altered in T4-induced cardiac hypertrophy. Am J Physiol 268:H686–H691

    CAS  PubMed  Google Scholar 

  144. 144.

    Weiss HR, Gong GX, Straznicka M, Yan L, Tse J, Scholz PM (1999) Cyclic GMP and cyclic AMP induced changes in control and hypertrophic cardiac myocyte function interact through cyclic GMP affected cyclic-AMP phosphodiesterases. Can J Physiol Pharmacol 77:422–431

    Article  CAS  PubMed  Google Scholar 

  145. 145.

    Wennerblom B, Lurje L, Solem J, Tygesen H, Uden M, Vahisalo R, Hjalmarson A (2000) Reduced heart rate variability in ischemic heart disease is only partially caused by ischemia. Cardiology 94:146–151

    Article  CAS  PubMed  Google Scholar 

  146. 146.

    Williamson JR (1964) Metabolic effects of epinephrine in the isolated, perfused rat heart. J Biol Chem 239:2721–2729

    CAS  PubMed  Google Scholar 

  147. 147.

    Williamson JR, Jamieson D (1966) Metabolic effects of epinephrine in the perfused rat heart. I. Comparison of intracellular redox states, tissue pO2, and force of contraction. Mol Pharmacol 2:191–205

    CAS  PubMed  Google Scholar 

  148. 148.

    Yamasaki Y, Kodama M, Matsuhisa M, Kishimoto M, Ozaki H, Tani A, Ueda N, Ishida Y, Kamada T (1996) Diurnal heart rate variability in healthy subjects: effects of aging and sex difference. Am J Physiol 271:H303–H310

    CAS  PubMed  Google Scholar 

  149. 149.

    Yamamoto Y, Hughson L, Peterson JC (1991) Autonomic control of heart rate during exercise studied by heart rate variability spectral analysis. J Appl Physiol 71:1136–1142

    CAS  PubMed  Google Scholar 

  150. 150.

    Yeragani VK, Sobolewski E, Kay J, Jampala VC, Igel G (1997) Effect of age on long-term heart rate variability. Caradiovasc Res 35:35–42

    Article  CAS  Google Scholar 

  151. 151.

    Yotsikura M, Kolde Y, Fujii K, Tomono Y, Katayama A, Ando H, Suzuki J, Ishikawa K (1998) Heart rate variability during the first month of smoking cessation. Am Heart J 135:1004–1009

    PubMed  Google Scholar 

  152. 152.

    Zeiher AM, Drexler H, Wollschläger H, Just H (1993) Modulation of coronary vasomotor tone in humans: progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 83:391–401

    Google Scholar 

  153. 153.

    Zhang Y-H, Song Y-C, Zhu J, Hu T-H, Wan L-I (1995) Effects of enalapril on heart rate variability in patients with congestive heart failure. Am J Cardiol 76:1045–1048

    Article  CAS  PubMed  Google Scholar 

  154. 154.

    Zipes DP (1990) Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation 82:1095–1105

    CAS  PubMed  Google Scholar 

  155. 155.

    Zuanetti, G, Neilson JMM, Latini R, Santoro E, Maggioni AP, Ewing DJ; on Behalf of GISSI-2 (1996) Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The GISSI-2 Results. Circulation 94:432–436

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dr. K. Sroka.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sroka, K. On the genesis of myocardial ischemia. Z Kardiol 93, 768–783 (2004). https://doi.org/10.1007/s00392-004-0137-6

Download citation

Schlüsselwörter

  • Ischämische Herzkrankheit
  • Myokardiale Ischämie
  • Autonomes Nervensystem
  • Kardiale Vagusaktivität
  • Herzfrequenz-Variabilität (HRV)

Key words

  • Ischemic heart disease
  • myocardial ischemia
  • autonomic nervous system
  • cardiac vagal activity
  • heart rate variability (HRV)