Skip to main content
Log in

Stroke volume and mitral annular velocities

Insights from tissue Doppler imaging

Bedeutung des Schlagvolumens für Mitralringgeschwindigkeiten in der Analyse mittels Gewebedoppler

  • ORIGINAL PAPER
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung.

Ziel der vorliegenden Studie war es, den Einfluss des Schlagvolumens (SV) auf die mittels Gewebedoppler (Tissue Doppler Imaging=TDI) abgeleiteten Mitralringgeschwindigkeiten zu untersuchen. Zu diesem Zweck wurden konventionelle echokardiographische Parameter und Mitralringgeschwindigkeiten (S′, E′, A′) bei 14 Patienten mit erhöhtem SV (bei primärer Mitralinsuffizienz (ESV-Gruppe)), bei 41 Patienten mit reduziertem SV (bei ischämischer (n=27) oder dilatativer Kardiomyopathie (n=9) oder hypertensiver Herzerkrankung (n=5) (RSV-Gruppe) und bei 29 asymptomatischen Kontrollprobanden erfasst. Systolische (S′) und frühdiastolische (E′) Mitralringgeschwindigkeiten waren in der ESV-Gruppe im Vergleich zur Kontrollgruppe erhöht, in der RSV-Gruppe erniedrigt. In der linearen Regressionsanalyse bestanden signifikante Beziehungen zwischen SV und systolischer Mitralannulusgeschwindigkeit S′ (r=0,74, p<0,001), SV und frühdiastolischer Mitralannulusgeschwindigkeit E′ (r=0,74, p<0,001) sowie SV und spätdiastolischer Mitralannulusgeschwindigkeit A′ (r=0,41, p<0,01). In der multivariaten Regressionsanalyse war SV ein stärkerer unabhängiger Prädiktor von S′ und E′ als konventionelle systolische oder diastolische echokardiographische Indices. Somit besitzt das Schlagvolumen einen bedeutsamen Einfluss auf systolische (S′) und frühdiastolische (E′) Mitralringgeschwindigkeiten. Dies sollte berücksichtigt werden, wenn Mitralringgeschwindigkeiten zur Beurteilung von systolischer/diastolischer Ventrikelfunktion oder zur Abschätzung von Füllungsdrücken eingesetzt werden.

Summary.

The aim of this study was to assess the impact of stroke volume (SV) on mitral annular velocities derived from tissue Doppler imaging (TDI). To this end, conventional echocardiographic variables and TDI derived mitral annular velocities (S′, E′, A′) were obtained in 14 patients (pts) with increased SV (due to primary mitral (n=12) (ISV group)), in 41 pts with reduced SV (due to ischemic (n=27) or dilated cardiomyopathy (n=9) or hypertensive heart disease (n=5) (RSV group)) and 29 asymptomatic controls with normal SV (CON group). Systolic (S′) and early diastolic (E′) mitral annular velocities were elevated in the ISV group in the comparison to the CON group, but were significantly reduced in the RSV group. Late diastolic annular velocities (A′) did not differ between the ISV and the CON group, but were lowest in the RSV group. On simple linear regression analysis, SV was significantly related to S′ (r=0.74, p<0.001), to E′ (r=0.74, p<0.001) and to A′ (r=0.43, p<0.01). On multiple regression analysis, SV was a stronger independent predictor of S′ and E′ than conventional systolic or diastolic echocardiographic variables. Thus, stroke volume has a significant impact on TDI derived systolic (S′) and early diastolic (E′) mitral annular velocities. This should be considered, when TDI is used in the evaluation of LV performance or in the estimation of filling pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Assmann PE, Slager CJ, Dreysse ST, van der Borden SG, Oomen JA, Roelandt JR (1988) Two-dimensional echocardiographic analysis of the dynamic geometry of the left ventricle. The basis for an improved model of wall motion. J Am Soc Echo 6:396–402

    Google Scholar 

  2. Bruch C, Stypmann J, Gradaus R, Breithardt G, Wichter T (2004) Usefulness of tissue Doppler imaging for estimation of filling pressures in patients with primary or secondary pure mitral regurgitation. Am J Cardiol 93:324–328

    Article  PubMed  Google Scholar 

  3. Erbel R, Henkel B, Ostländer C, Clas W, Brennecke R, Meyer J (1985) Normalwerte für die zweidimensionale Echokardiographie. Deutsch Med Wochenschr 110:123–128

    CAS  Google Scholar 

  4. Faber L, Lamp B, Hering D, Bogunovic N, Scholtz W, Heintze J, Vogt J, Horstkotte D (2003) Analysis of interand intraventricular asynchrony by tissue Doppler echocardiography. Z Kardiol 92:994–1002

    Article  CAS  PubMed  Google Scholar 

  5. Firstenberg MS, Greenberg NL, Main ML, Drinko JK, Odabashian JA, Thomas JD et al (2001) Determinants of diastolic myocardial tissue Doppler velocities: influences of relaxation and preload. J Appl Physiol 90:299–307

    CAS  PubMed  Google Scholar 

  6. Garcia MJ, Rodriguez L, Ares M, Griffin BP, Thomas JD, Klein AL (1996) Differentiation of constrictive pericarditis from restrictive cardiomyopathy: assessment of left ventricular diastolic velocities in longitudinal axis by Doppler tissue imaging. J Am Coll Cardiol 27:108–114

    Article  CAS  PubMed  Google Scholar 

  7. Helmcke F, Nanda NC, Hsiung MC, Soto B, Adey CK, Goyal RG et al (1987) Color Doppler assessment of mitral regurgitation with orthogonal planes. Circulation 75:175–183

    CAS  PubMed  Google Scholar 

  8. Issaz K, Munoz del Romeral L, Lee E, Schiller NB (1993) Quantification of the motion of the cardiac base in normal subjects by Doppler echocardiography. J Am Soc Echo 6:166–176

    Google Scholar 

  9. Koehler U, Becker HF, Gross V, Reinke C, Penzel T, Schafer H, Vogelmeier C (2003) Why is obstructive sleep apnea (OSA) a cardiovascular risk factor? Z Kardiol 92:977–984

    Article  CAS  PubMed  Google Scholar 

  10. Moll W (2001) Physiological cardiovascular adaptation in pregnancy-its significance for cardiac diseases. Z Kardiol 90 Suppl 4:2–9

    Google Scholar 

  11. Nagueh SF, Bachinski LL, Meyer D, Hill R, Zoghbi WA, Tam JW et al (2001) Tissue Doppler imaging consistently detects myocardial abnormalities in patients with hypertrophic cardiomyopathy and provides a novel means for an early diagnosis before and independently of hypertrophy. Circulation 104:128–130

    CAS  PubMed  Google Scholar 

  12. Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA (1997) Doppler tissue imaging: a non-invasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30:1527–1533

    Article  CAS  PubMed  Google Scholar 

  13. Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS (2001) Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol 37:278–285

    Article  CAS  PubMed  Google Scholar 

  14. Pai RG, Bodenheimer MM, Pai SM, Koss JH, Adamick RD (1991) Usefulness of systolic excursion of the mitral anulus as an index of left ventricular systolic function. Am J Cardiol 67:222–224

    Article  CAS  PubMed  Google Scholar 

  15. Perry GJ, Helmcke F, Nanda NC, Byard C, Soto B (1987) Evaluation of aortic insufficiency by Doppler color flow mapping. J Am Coll Cardiol 9:952–959

    CAS  PubMed  Google Scholar 

  16. Pu M, Prior DL, Fan X, Asher CR, Vasquez C, Griffin BP et al (2001) Calculation of mitral regurgitant orifice area with use of a simplified proximal convergence method: initial clinical application. J Am Soc Echo 14:180–185

    Article  CAS  Google Scholar 

  17. Rodriguez L, Garcia M, Ares M, Griffin BP, Klein AL, Stewart WJ et al (1996) Assessment of mitral annular dynamics during diastole by Doppler tissue imaging: comparison with mitral Doppler inflow in subjects without heart disease and in patients with left ventricular hypertrophy. Am Heart J 131:982–987

    Article  CAS  PubMed  Google Scholar 

  18. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H et al (1989) Recommendations for quantification of the left ventricle by two-dimensional echocardiography. J Am Soc Echo 2:358–367

    CAS  PubMed  Google Scholar 

  19. Sohn DW, Chai ICH, Lee DJ, Kim HC, Kim HS, Oh BH et al (1997) Assessment of mitral anulus velocity by Doppler tissue imaging in the evaluation of left ventricular diastolic function. J Am Coll Cardiol 30:474–480

    Article  CAS  PubMed  Google Scholar 

  20. Yip G, Wang M, Zhang Y, Fung JW, Ho PY, Sanderson JE (2002) Left ventricular long axis function in diastolic heart failure is reduced in both diastole and systole: time for a redefinition? Heart 87:121–125

    Article  CAS  PubMed  Google Scholar 

  21. Yu CM, Lin H, Yang H, Kong SL, Zhang Q, Lee SW (2002) Progression of systolic abnormalities in patients with “isolated” diastolic heart failure and diastolic dysfunction. Circulation 105:1195–2007

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Bruch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruch, C., Stypmann, J., Gradaus, R. et al. Stroke volume and mitral annular velocities. Z Kardiol 93, 799–806 (2004). https://doi.org/10.1007/s00392-004-0132-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-004-0132-y

Schlüsselwörter

Key words

Navigation