Skip to main content
Log in

Assessment of left ventricular function with steady-state-free-precession magnetic resonance imaging

Reference values and a comparison to left ventriculography

Bestimmung der linksventrikulären Funktion mittels Steady-state-free-precession Magnetresonanztomographie: Referenzwerte und ein Vergleich zur Laevokardiographie

  • ORIGINAL PAPER
  • Published:
Zeitschrift für Kardiologie Aims and scope Submit manuscript

Zusammenfassung.

Die mittels Laevokardiographie bestimmten Parameter Ejektionsfraktion (EF), der enddiastolische und endsystolische Volumenindex (EDVI/ESVI) haben eine große prognostische Bedeutung. Die kardiale Magnetresonanztomographie (MRT) bietet bei Verwendung einer Steady-State-Free-Precession-Sequenz eine hervorragende Abgrenzbarkeit der linksventrikulären Wand und liefert gut reproduzierbare und präzise Ergebnisse für die Bestimmung der linksventrikulären Funktion. In dieser Studie wurde die MRT-Volumetrie mit unter Routinebedingungen angefertigten Laevokardiographien verglichen. Hierzu wurden bei 200 Patienten EDVI, ESVI und EF mittels Laevokardiographie und MRT-Volumetrie bestimmt. Das gleiche MRT-Protokoll wurde zusätzlich an 102 Herzgesunden Personen zur Etablierung von Normalwerten angewendet. Bei den Herzgesunden betrug die mittlere EF 68,8 ± 5,4% (59–84%), der mittlere EDVI 69,4 ± 9,8 ml (43–90 ml) und das mittlere endsystolische Volumen 22,0 ± 5,8 (10–35 ml). In dem gesamten Patientenkollektiv lag die Korrelation (Spearman R) zwischen Laevokardiographie und MRT-Volumetrie bei 0,86 für EF, 0,77 für EDVI und 0,88 für ESVI. Bei Patienten in den nur postextrasystolische Schläge auswertbar waren (38% aller Messungen) lag R bei 0,73/ 0,65/0,73 für EF/EDVI/ESVI. Die MRT zeigte die beste Korrelation mit biplaner Laevokardiographie während durchgehendem Sinusrhythmus (R = 0,96/0,85/0,93); die schlechteste Korrelation (0,78/ 0,81/0,83) ergab sich bei Patienten mit Wandbewegungsstörungen, die mit monoplaner Laevokardiographie gemessen wurden.

Schlussfolgerung:

Die MRT-Volumetrie liefert Ergebnisse, die mit denen einer unter Optimalbedingungen durchgeführten Laevokardiographie gut vergleichbar sind. Die Resultate lassen ferner den Schluss zu, dass dies unabhängig von regionalen Wandbewegungsstörungen und Arrhythmien gilt.

Summary.

Ejection fraction (EF) and end-diastolic and endsystolic volume index (EDVI/ ESVI) derived from ventriculography are important prognostic parameters. Cine magnetic resonance imaging (MRI) using a steady-state, free-precession sequence (SSFP) offers excellent delineation of the endocardial borders and highly reproducible and accurate results for cardiac volumes. We evaluated MRI volumetry against routine x-ray ventriculography. In 200 patients EF, EDVI and ESVI were measured with MRI volumetry and x-ray ventriculography. The same MRI protocol was applied to 102 healthy persons in order to establish reference values. In healthy subjects mean EF was 68.8% ± 5.4% (range 59–84%), mean EDVI 69 ± 10 (43–90) and mean ESVI 22 ± 5.8 (10–35 ml). In the patients, overall correlation (Spearman’s R) of MRI with ventriculography was 0.86 for EF, 0.77 for EDVI and 0.88 for ESVI. For postextrasystolic beats (38% of the measurements), R was 0.73/0.65/0.73 for EF/EDVI/ESVI. MRI correlated best with biplane ventriculography during sinus rhythm (0.96/0.85/0.93); the worst correlation (0.78/0.81/0.83) resulted from patients with wall motion abnormalities in comparison to monoplane x-ray ventriculography.

Conclusion:

Contemporary MRI volumetry compares well to invasive data obtained under optimal conditions. In view of the known limitations of single plane ventriculography, MRI seems to allow exact volumetry independent from regional wall motion abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Volpi A, De Vita C, Franzosi MG, Geraci E, Maggioni AP, Mauri F, Negri E, Santoro E, Tavazzi L, Tognoni G (1993) Determinants of 6-month mortality in survivors of myocardial infarction after thrombolysis. Results of the GISSI-2 data base. The Ad hoc Working Group of the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI)-2 Data Base. Circulation 88:416–429

    CAS  PubMed  Google Scholar 

  2. Peterson ED, Shaw LJ, Califf RM (1997) Risk stratification after myocardial infarction. Ann Intern Med 126:561–582

    CAS  PubMed  Google Scholar 

  3. Bonow RO, Lakatos E, Maron BJ, Epstein SE (1991) Serial long-term assessment of the natural history of asymptomatic patients with chronic aortic regurgitation and normal left ventricular systolic function. Circulation 84:1625–1635

    CAS  PubMed  Google Scholar 

  4. Douglas PS (2002) What are the top 10 reasons not to use a contrast? J Am Soc Echocardiogr 15:19A

    PubMed  Google Scholar 

  5. Mogelvang J, Lindvig K, Sondergaard L, Saunamaki K, Henriksen O (1993) Reproducibility of cardiac volume measurements including left ventricular mass determined by MRI. Clin Physiol 13:587–597

    CAS  PubMed  Google Scholar 

  6. Rominger MB, Bachmann GF, Pabst W, Ricken WW, Dinkel HP, Rau WS (2000) Left ventricular heart volume determination with fast MRI in breath holding technique: how different are quantitative heart catheter, quantitative MRI and visual echocardiography? Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 172:23–32

    Article  CAS  PubMed  Google Scholar 

  7. Baur LH, Schipperheyn JJ, van der Velde EA, van der Wall EE, Reiber JH, van der Geest RJ, van Dijkman PR, Gerritsen JG, Eck-Smit BL, Voogd PJ, Bruschke AV (1996) Reproducibility of left ventricular size, shape and mass with echocardiography, magnetic resonance imaging and radionuclide angiography in patients with anterior wall infarction. A plea for core laboratories. Int J Card Imaging 12:233–240

    CAS  PubMed  Google Scholar 

  8. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, Pennell DJ (2000) Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable? Eur Heart J 21:1387–1396

    Article  CAS  PubMed  Google Scholar 

  9. Barkhausen J, Ruehm SG, Goyen M, Buck T, Laub G, Debatin JF (2001) MR evaluation of ventricular function: true fast imaging with steadystate precession versus fast low-angle shot cine MR imaging: feasibility study. Radiology 219:264–269

    Google Scholar 

  10. Thiele H, Nagel E, Paetsch I, Schnackenburg B, Bornstedt A, Kouwenhoven M, Wahl A, Schuler G, Fleck E (2001) Functional cardiac MR imaging with steady-state free precession (SSFP) significantly improves endocardial border delineation without contrast agents. J Magn Reson Imaging 14:362–367

    Article  CAS  PubMed  Google Scholar 

  11. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ (2002) Breathhold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 223:789–797

    PubMed  Google Scholar 

  12. Thiele H, Paetsch I, Schnackenburg B, Bornstedt A, Grebe O, Wellnhofer E, Schuler G, Fleck E, Nagel E (2002) Improved accuracy of quantitative assessment of left ventricular volume and ejection fraction by geometric models with steady-state free precession. J Cardiovasc Magn Reson 4:327–339

    Article  PubMed  Google Scholar 

  13. Wyman DR (1987) Assessment of a procedure for left ventricle volumetry. Phys Med Biol 32:495–507

    Article  CAS  PubMed  Google Scholar 

  14. Dodge HT, Sandler H, Ballew DW (1960) The use of biplane angiocardiography for the measurement of the left ventricular volume in man. Am Heart J 60:762 ff

    Article  CAS  PubMed  Google Scholar 

  15. Sandler H, Dodge HT (1968) The use of single plane angiocardiograms for the calculation of left ventricular volume in man. Am Heart J 75:325–334

    Article  CAS  PubMed  Google Scholar 

  16. Reiber JH, Viddeleer AR, Koning G, Schalij MJ, Lange PE (1996) Left ventricular regression equations from single plane cine and digital X-ray ventriculograms revisited. Int J Card Imaging 12:69–78

    CAS  PubMed  Google Scholar 

  17. DuBois D, DuBois EF (1916) A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med 17:863–871

    CAS  Google Scholar 

  18. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1:307–310

    CAS  PubMed  Google Scholar 

  19. Stratemeier EJ, Thompson R, Brady TJ, Miller SW, Saini S, Wismer GL, Okada RD, Dinsmore RE (1986) Ejection fraction determination by MR imaging: comparison with left ventricular angiography. Radiology 158:775–777

    CAS  PubMed  Google Scholar 

  20. Buckwalter KA, Aisen AM, Dilworth LR, Mancini GB, Buda AJ (1986) Gated cardiac MRI: ejection-fraction determination using the right anterior oblique view. AJR Am J Roentgenol 147:33–37

    CAS  PubMed  Google Scholar 

  21. Cranney GB, Lotan CS, Dean L, Baxley W, Bouchard A, Pohost GM (1990) Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation 82:154–163

    CAS  PubMed  Google Scholar 

  22. van Rossum AC, Visser FC, Sprenger M, van Eenige MJ, Valk J, Roos JP (1988) Evaluation of magnetic resonance imaging for determination of left ventricular ejection fraction and comparison with angiography. Am J Cardiol 62:628–633

    Article  CAS  PubMed  Google Scholar 

  23. Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R (1997) Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and twodimensional echocardiography. Circulation 96:4286–4297

    CAS  PubMed  Google Scholar 

  24. Darasz KH, Underwood SR, Bayliss J, Forbat SM, Keegan J, Poole-Wilson PA, Sutton GC (2002) Measurement of left ventricular volume after anterior myocardial infarction: comparison of magnetic resonance imaging, echocardiography, and radionuclide ventriculography. Int J Cardiovasc Imaging 18:135–142

    Article  CAS  PubMed  Google Scholar 

  25. Bavelaar-Croon CD, Kayser HW, van der Wall EE, de Roos A, Dibbets-Schneider P, Pauwels EK, Germano G, Atsma DE (2000) Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology 217:572–575

    CAS  PubMed  Google Scholar 

  26. Ichikawa Y, Sakuma H, Kitagawa K, Ishida N, Takeda K, Uemura S, Motoyasu M, Nakano T, Nozaki A (2003) Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 5:333–342

    Article  PubMed  Google Scholar 

  27. Alfakih K, Thiele H, Plein S, Bainbridge GJ, Ridgway JP, Sivananthan MU (2002) Comparison of right ventricular volume measurement between segmented k-space gradientecho and steady-state free precession magnetic resonance imaging. J Magn Reson Imaging 16:253–258

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Grebe.

Additional information

Dr. Olaf Grebe, Dr. Hans A. Kestler und PD Dr. Martin Höher haben zu gleichen Teilen an der Erstellung des Manuskriptes mitgewirkt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grebe, O., Kestler, H.A., Merkle, N. et al. Assessment of left ventricular function with steady-state-free-precession magnetic resonance imaging. Z Kardiol 93, 686–695 (2004). https://doi.org/10.1007/s00392-004-0116-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00392-004-0116-y

Schlüsselwörter

Key words

Navigation