Skip to main content
Log in

Biologische Alterungsmechanismen im Herz-Kreislauf-System

Biological mechanisms of aging in the cardiovascular system

  • Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Zusammenfassung

Herz-Kreislauf-Erkrankungen, die am Ende der Bandbreite von degenerativen Prozessen stehen, sind eine der häufigsten Todesursachen weltweit. Einen kausalen Beitrag zu diesen und vielen anderen Erkrankungen leisten zentrale biologische Alterungsmechanismen, die als die „hallmarks of aging“ zusammengefasst wurden. Dazu gehören die Akkumulation makromolekularer Schäden, epigenetische Veränderungen, eine gestörte Proteostase, Telomerverkürzung, mitochondriale Dysfunktion, zelluläre Seneszenz, Entzündungsreaktionen, ein veränderter Metabolismus sowie gestörte, zelluläre Kommunikation und Veränderungen in der Stammzellnische. Im kardiovaskulären System sind v. a. oxidativer und glykativer Stress als Quelle makromolekularer Schäden von Bedeutung. Die so verursachten, schleichenden Veränderungen reduzieren die Resilienz und Resistenz des Herzens und der Gefäße gegenüber Stress und führen letztendlich zu Funktionseinschränkungen und Erkrankungen. Ein möglicher, neuartiger Ansatz, der nicht auf eine Intervention gegen die klassischen kardiovaskulären Erkrankungen, sondern gegen die Hallmarks of aging abzielt und als Geroscience bezeichnet wird, liefert wertvolle Konzepte, muss sich in der Zukunft aber noch beweisen.

Abstract

Cardiovascular diseases, which are at the end of a spectrum of degenerative processes, are one of the leading causes of death worldwide. A causal contribution to these and many other diseases is made by key biological aging mechanisms that have been summarized as the hallmarks of aging. These include accumulation of macromolecular damage, epigenetic changes, impaired proteostasis, telomere shortening, mitochondrial dysfunction, cellular senescence, inflammatory reactions, altered metabolism, impaired cellular communication and changes in the stem cell niche. In the cardiovascular system, oxidative and glycative stress are particularly important as sources of macromolecular damage. These induced insidious changes reduce the resilience and resistance of the heart and vessels to stress, ultimately leading to functional impairments and diseases. A possible novel approach, which does not aim at an intervention against the classical cardiovascular diseases but against the hallmarks of aging, and is termed geroscience, provides valuable concepts but still has to prove itself in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Destatis (2022, 13. Juni) Gestorbene: Deutschland, Jahre, Todesursachen, Geschlecht. https://www-genesis.destatis.de/genesis/online. Zugegriffen: 13.06.2022

  2. Lakatta EG (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 107(3):490–497

    Article  Google Scholar 

  3. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part II: the aging heart in health: links to heart disease. Circulation 107(2):346–354

    Article  Google Scholar 

  4. Lakatta EG, Levy D (2003) Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part I: aging arteries: a “set up” for vascular disease. Circulation 107(1):139–146

    Article  Google Scholar 

  5. Chen MS, Lee RT, Garbern JC (2022) Senescence mechanisms and targets in the heart. Cardiovasc Res 118(5):1173–1187

    Article  CAS  Google Scholar 

  6. Cohen AA, Legault V, Fulop T (2020) What if there’s no such thing as “aging”? Mech Ageing Dev 192:111344

    Article  Google Scholar 

  7. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217

    Article  Google Scholar 

  8. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES et al (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713

    Article  CAS  Google Scholar 

  9. Chiao YA, Lakatta E, Ungvari Z, Dai D‑F, Rabinovitch P (2016) Cardiovascular disease and aging. In: Sierra F, Kohanski R (Hrsg) Advances in Geroscience. Springer, Cham, S 121–160

    Chapter  Google Scholar 

  10. Gladyshev VN, Kritchevsky SB, Clarke SG, Cuervo AM, Fiehn O, de Magalhães JP et al (2021) Molecular damage in aging. Nat Aging 1(12):1096–1106

    Article  Google Scholar 

  11. Basta G, Schmidt AM, De Caterina R (2004) Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res 63(4):582–592

    Article  CAS  Google Scholar 

  12. Simm A (2013) Protein glycation during aging and in cardiovascular disease. J Proteomics 92:248–259

    Article  CAS  Google Scholar 

  13. Goffart S, von Kleist-Retzow J‑C, Wiesner RJ (2004) Regulation of mitochondrial proliferation in the heart: power-plant failure contributes to cardiac failure in hypertrophy. Cardiovasc Res 64(2):198–207

    Article  CAS  Google Scholar 

  14. Lesnefsky EJ, Chen Q, Hoppel CL (2016) Mitochondrial metabolism in aging heart. Circ Res 118(10):1593–1611

    Article  CAS  Google Scholar 

  15. Zhou T‑J, Gao Y (2010) Molecular mechanisms of cardiac aging. “. J Geriatr Cardiol 7(4):184

    CAS  Google Scholar 

  16. Lyu G, Guan Y, Zhang C, Zong L, Sun L, Huang X et al (2018) TGF‑β signaling alters H4K20me3 status via miR-29 and contributes to cellular senescence and cardiac aging. Nat Commun 9(1):2560

    Article  Google Scholar 

  17. Kumari K, Sahib MK (1993) Susceptibility of different rat tissues to non-enzymatic protein glycosylation in experimental diabetes. Indian J Exp Biol 31(2):194–195

    CAS  PubMed  Google Scholar 

  18. Takata T, Sakasai-Sakai A, Ueda T, Takeuchi M (2019) Intracellular toxic advanced glycation end-products in cardiomyocytes may cause cardiovascular disease. Sci Rep 9(1):2121

    Article  Google Scholar 

  19. Yan SD, Schmidt AM, Anderson GM, Zhang J, Brett J, Zou YS et al (1994) Enhanced cellular oxidant stress by the interaction of advanced glycation end products with their receptors/binding proteins. J Biol Chem 269(13):9889–9897

    Article  CAS  Google Scholar 

  20. Winterhalter PR, Wirkner M, Bartling B, Wächter K, Urazova A, Großkopf A et al (2022) Sex-dependent deterioration of cardiac function and molecular alterations in age- and disease-associated RAGE overexpression. Mech Ageing Dev 203:111635

    Article  CAS  Google Scholar 

  21. Sakata N, Meng J, Takebayashi S (2000) Effects of advanced glycation end-products on the proliferation and fibronectin production of smooth muscle cells. J Atheroscler Thromb 7(3):169–176

    Article  CAS  Google Scholar 

  22. Bierhaus A, Hofmann MA, Ziegler R, Nawroth PP (1998) AGEs and their interaction with AGE-receptors in vascular disease and diabetes mellitus. I. The AGE concept. Cardiovasc Res 37(3):586–600

    Article  CAS  Google Scholar 

  23. Coughlan MT, Thorburn DR, Penfold SA, Laskowski A, Harcourt BE, Sourris KC et al (2009) RAGE-induced cytosolic ROS promote mitochondrial superoxide generation in diabetes. J Am Soc Nephrol 20(4):742–752

    Article  CAS  Google Scholar 

  24. Ungvari Z, Tarantini S, Sorond F, Merkely B, Csiszar A (2020) Mechanisms of vascular aging, a geroscience perspective: JACC focus seminar. J Am Coll Cardiol 75(8):931–941

    Article  CAS  Google Scholar 

  25. Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S et al (2009) Evidence for cardiomyocyte renewal in humans. Science 324(5923):98–102

    Article  CAS  Google Scholar 

  26. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A (2018) Mechanisms of vascular aging. Circ Res 123(7):849–867

    Article  CAS  Google Scholar 

  27. Yan M, Sun S, Xu K, Huang X, Dou L, Pang J et al (2021) Cardiac aging: from basic research to therapeutics. Oxid Med Cell Longev 2021:9570325

    Article  Google Scholar 

  28. Honda S, Ikeda K, Urata R, Yamazaki E, Emoto N, Matoba S (2021) Cellular senescence promotes endothelial activation through epigenetic alteration, and consequently accelerates atherosclerosis. Sci Rep 11(1):14608

    Article  CAS  Google Scholar 

  29. Dellago H, Preschitz-Kammerhofer B, Terlecki-Zaniewicz L, Schreiner C, Fortschegger K, Chang MW et al (2013) High levels of oncomiR-21 contribute to the senescence-induced growth arrest in normal human cells and its knock-down increases the replicative lifespan. Aging Cell 12(3):446–458

    Article  CAS  Google Scholar 

  30. Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J et al (2019) Length-independent telomere damage drives post-mitotic cardiomyocyte senescence. EMBO J 38(5):e100492

    Article  Google Scholar 

  31. Colafella KMM, Denton KM (2018) Sex-specific differences in hypertension and associated cardiovascular disease. Nat Rev Nephrol 14(3):185–201

    Article  Google Scholar 

  32. Justina DV, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC (2021) Sex differences in molecular mechanisms of cardiovascular aging. Front Aging 2:725884

  33. Ji H, Kwan AC, Chen MT, Ouyang D, Ebinger JE, Bell SP et al (2022) Sex differences in myocardial and vascular aging. Circ Res 130(4):566–577

    Article  CAS  Google Scholar 

  34. de Almeida A, Ribeiro TP, de Medeiros IA (2017) Aging: molecular pathways and implications on the cardiovascular system. Oxid Med Cell Longev 2017:7941563

    Article  Google Scholar 

  35. Lakatta EGS (2015) What’s aging? Is cardiovascular aging a disease? J Mol Cell Cardiol 83:1–13

    Article  CAS  Google Scholar 

  36. Paneni F, Diaz Cañestro C, Libby P, Lüscher TF, Camici GG (2017) The aging cardiovascular system: understanding it at the cellular and clinical levels. J Am Coll Cardiol 69(15:1952–1967

    Article  Google Scholar 

  37. Sierra F (2016) The emergence of Geroscience as an interdisciplinary approach to the enhancement of health span and life span. Cold Spring Harb Perspect Med 6(4):a25163–a

    Article  Google Scholar 

  38. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B et al (2011) Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236

    Article  CAS  Google Scholar 

  39. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256

    Article  CAS  Google Scholar 

  40. Gasek NS, Kuchel GA, Kirkland JL, Xu M (2021) Strategies for targeting senescent cells in human disease. Nat Aging 1(10):870–879

    Article  Google Scholar 

Download references

Förderung

Die Autoren wurden gefördert über die DFG GRK 2155 ProMoAge (AS) und das Projekt BioSALSA (ID: ZS/2019/07/99752) des Verbundprojektes „Autonomie im Alter“ (AiA, gefördert von der Europäischen Union und dem Land Sachsen-Anhalt, AG, AS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Simm.

Ethics declarations

Interessenkonflikt

A. Großkopf, L. Saemann, G. Szabó und A. Simm geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Großkopf, A., Saemann, L., Szabó, G. et al. Biologische Alterungsmechanismen im Herz-Kreislauf-System. Z Gerontol Geriat 55, 455–460 (2022). https://doi.org/10.1007/s00391-022-02094-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-022-02094-8

Schlüsselwörter

Keywords

Navigation