Selen und Zink: „Antioxidanzien“ für ein gesundes Altern?

Selenium and zinc: “antioxidants” for healthy aging?

Zusammenfassung

Eine unzureichende Versorgung mit den essenziellen Spurenelementen Selen und Zink wurde mit einer Schwächung des Immunsystems und der kognitiven Leistungsfähigkeit bei älteren Personen und mit der Entstehung altersassoziierter Erkrankungen in Verbindung gebracht. In Nahrungsergänzungsmitteln werden beide Spurenelemente oft als „Antioxidanzien“ beworben. Zwar sind weder Selen noch Zink direkte Antioxidanzien, beide können aber als Bestandteil von Enzymen und anderen Proteinen Redoxreaktionen katalysieren bzw. zur Erhaltung der Redoxhomöostase beitragen. Gemäß epidemiologischen Daten können die Selen- und Zink-Plasma-Werte älterer Menschen vermindert sein. Solche Befunde begründen keinen Kausalzusammenhang, umso mehr als es bisher nur wenige Interventionsstudien gibt, die zudem widersprüchliche und z. T unerwartete nachteilige Ergebnisse einer Supplementation aufgezeigt haben. Eine verringerte Versorgung durch die Nahrung muss nicht die einzige Ursache für niedrige Plasmawerte von Spurenelementen bei älteren Menschen sein; weitere Faktoren, wie z. B. medikamentöse Behandlungen oder Interaktionen mit anderen Nahrungsbestandteilen, können die Aufnahme und Verteilung von Spurenelementen im Körper beeinflussen. In jedem Einzelfall ist sorgfältig abzuwägen, ob die Supplementierung der Nahrung mit Mineralstoffpräparaten notwendig ist. Personen, die Nahrungsergänzungsmittel einnehmen wollen, sollten zuvor ihren Arzt konsultieren. Im Folgenden werden die Rollen von Selen und Zink in biologischen antioxidativen Systemen diskutiert. Ein Überblick über Studien zur Versorgung von älteren Menschen mit diesen Spurenelementen und deren Bedeutung für die Gesundheit im Alter, insbesondere im Hinblick auf kognitive Beeinträchtigungen und auf Diabetes mellitus Typ 2, wird präsentiert.

Abstract

Selenium and zinc are essential trace elements and an inadequate dietary intake has been implicated in the decline of immune and cognitive functions in aged persons and in the pathogenesis of age-related disorders. Both micronutrients are often marketed as “antioxidants” in mineral supplements; however, neither selenium nor zinc are antioxidants per se but they may exert beneficial effects as components of enzymes and other proteins that catalyze redox reactions and/or are involved in the maintenance of redox homeostasis. According to epidemiological data older individuals have an increased risk of developing deficiencies in the selenium and zinc status; however, such statistical correlations in epidemiological studies do not imply a causal association. Intervention trials are scarce and have yielded inconsistent and sometimes even adverse results. It should also be noted that the observed deficiencies in micronutrients may not necessarily be attributable to inadequate dietary intake as the absorption and distribution within the body might also be influenced by factors such as medications or interaction with other food ingredients. Thus, any dietary supplementation should be implemented with caution and persons who wish to take mineral supplements should first seek medical advice. This article discusses the role of selenium and zinc in biological antioxidant systems, summarizes findings on the supply and supplementation of aged persons with these trace elements and on the influence they may exert on aging-related health issues, such as cognitive decline and type 2 diabetes mellitus.

This is a preview of subscription content, access via your institution.

Notes

  1. 1.

    Die aktuellen D‑A-CH Werte sind auf der Internetseite der Deutschen Gesellschaft für Ernährung (DGE) unter www.dge.de/wissenschaft/referenzwerte/ abrufbar.

  2. 2.

    Abrufbar unter www.mri.bund.de/de/institute/ernaehrungsverhalten/forschungsprojekte/nvsii/.

Literatur

  1. 1.

    Klotz LO, Simm A (2019) Biologie des Alterns. In: Hank K, Schulz-Nieswandt F, Wagner M, Zank S (Hrsg) Alternsforschung. Nomos, Baden-Baden, S 83–107

    Google Scholar 

  2. 2.

    Simm A, Klotz LO (2015) Stress and biological aging: a double-edged sword. Z Gerontol Geriatr 48:505–510

    PubMed  Article  Google Scholar 

  3. 3.

    Sies H (1993) Strategies of antioxidant defense. Eur J Biochem 215:213–219

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Klotz LO (2015) On the biochemistry of antioxidants: current aspects. In: Roberts SM, Kehrer JP, Klotz LO (Hrsg) Studies on experimental toxicology and pharmacology. Springer, Cham, S 383–396

    Google Scholar 

  5. 5.

    Klotz LO, Steinbrenner H (2017) Cellular adaptation to xenobiotics: Interplay between xenosensors, reactive oxygen species and FOXO transcription factors. Redox Biol 13:646–654

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Maret W (2019) The redox biology of redox-inert zinc ions. Free Radic Biol Med 134:311–326

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Fairweather-Tait SJ, Bao Y, Broadley MR, Collings R, Ford D, Hesketh JE, Hurst R (2011) Selenium in human health and disease. Antioxidants Redox Signal 14:1337–1383

    CAS  Article  Google Scholar 

  8. 8.

    Steinbrenner H, Speckmann B, Klotz LO (2016) Selenoproteins: antioxidant selenoenzymes and beyond. Arch Biochem Biophys 595:113–119

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Steinbrenner H, Brigelius-Flohé R (2015) Das essenzielle Spurenelement Selen: Selenbedarf in Gesundheit und Krankheit (The Essential Trace Element Selenium: Requirements for Selenium Intake in Health and Disease). Aktuel Ernahrungsmed 40:368–378

    CAS  Article  Google Scholar 

  10. 10.

    Labunskyy VM, Hatfield DL, Gladyshev VN (2014) Selenoproteins: molecular pathways and physiological roles. Physiol Rev 94:739–777

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Parge HE, Hallewell RA, Tainer JA (1992) Atomic structures of wild-type and thermostable mutant recombinant human Cu,Zn superoxide dismutase. Proc Natl Acad Sci U S A 89:6109–6113

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Kröncke KD, Klotz LO (2009) Zinc fingers as biologic redox switches? Antioxid Redox Signal 11:1015–1027

    PubMed  Article  CAS  Google Scholar 

  13. 13.

    Kröncke KD, Klotz LO, Suschek CV, Sies H (2002) Comparing nitrosative versus oxidative stress toward zinc finger-dependent transcription. Unique role for NO. J Biol Chem 277:13294–13301

    PubMed  Article  CAS  Google Scholar 

  14. 14.

    Günther V, Lindert U, Schaffner W (2012) The taste of heavy metals: gene regulation by MTF‑1. Biochim Biophys Acta 1823:1416–1425

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Park C, Jeong J (2018) Synergistic cellular responses to heavy metal exposure: a minireview. Biochim Biophys Acta Gen Subj 1862:1584–1591

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Walter PL, Kampkötter A, Eckers A, Barthel A, Schmoll D, Sies H, Klotz LO (2006) Modulation of FoxO signaling in human hepatoma cells by exposure to copper or zinc ions. Arch Biochem Biophys 454:107–113

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Barthel A, Ostrakhovitch EA, Walter PL, Kampkötter A, Klotz LO (2007) Stimulation of phosphoinositide 3‑kinase/Akt signaling by copper and zinc ions: mechanisms and consequences. Arch Biochem Biophys 463:175–182

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Plum LM, Brieger A, Engelhardt G, Hebel S, Nessel A, Arlt M, Kaltenberg J, Schwaneberg U, Huber M, Rink L, Haase H (2014) PTEN-inhibition by zinc ions augments interleukin-2-mediated Akt phosphorylation. Metallomics 6:1277–1287

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Loh SN (2010) The missing zinc: p53 misfolding and cancer. Metallomics 2:442–449

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Kumar RA, Koc A, Cerny RL, Gladyshev VN (2002) Reaction mechanism, evolutionary analysis, and role of zinc in Drosophila methionine-R-sulfoxide reductase. J Biol Chem 277:37527–37535

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Hedera P (2019) Clinical management of Wilson disease. Ann Transl Med 7:S66

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Fairweather-Tait S, Hurrell RF (1996) Bioavailability of minerals and trace elements. Nutr Res Rev 9:295–324

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Elmadfa I, Leitzmann C (2019) Kap. 4: Mineralstoffe: Mengen- und Spurenelemente. In: Ernährung des Menschen, 6. Aufl. UTB, Stuttgart, S 314–335

    Google Scholar 

  24. 24.

    Lim KH, Riddell LJ, Nowson CA, Booth AO, Szymlek-Gay EA (2013) Iron and zinc nutrition in the economically-developed world: a review. Nutrients 5:3184–3211

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Freeland-Graves JH, Sanjeevi N, Lee JJ (2015) Global perspectives on trace element requirements. J Trace Elem Med Biol 31:135–141

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Wegmüller R, Tay F, Zeder C, Brnic M, Hurrell RF (2014) Zinc absorption by young adults from supplemental zinc citrate is comparable with that from zinc gluconate and higher than from zinc oxide. J Nutr 144:132–136

    PubMed  Article  CAS  Google Scholar 

  27. 27.

    D‑A-CH/Deutsche Gesellschaft für Ernährung (DGE), Österreichische Gesellschaft für Ernährung (ÖGE), Schweizerische Gesellschaft für Ernährung (SGE) (2019) Referenzwerte für die Nährstoffzufuhr, 2. Aufl. Neuer Umschau Buchverlag, Bonn (5. aktual. Ausgabe)

    Google Scholar 

  28. 28.

    Kipp AP, Strohm D, Brigelius-Flohé R, Schomburg L, Bechthold A, Leschik-Bonnet E, Heseker H, German Nutrition Society D (2015) Revised reference values for selenium intake. J Trace Elem Med Biol 32:195–199

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Lowe NM, Fekete K, Decsi T (2009) Methods of assessment of zinc status in humans: a systematic review. Am J Clin Nutr 89:2040S–2051S

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Prasad AS, Halsted JA, Nadimi M (1961) Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. Am J Med 31:532–546

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Plum LM, Rink L, Haase H (2010) The essential toxin: impact of zinc on human health. Int J Environ Res Public Health 7:1342–1365

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Ekmekcioglu C (2001) The role of trace elements for the health of elderly individuals. Nahrung 45:309–316

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Arnaud J, Bertrais S, Roussel AM, Arnault N, Ruffieux D, Favier A, Berthelin S, Estaquio C, Galan P, Czernichow S, Hercberg S (2006) Serum selenium determinants in French adults: the SU.VI.M.AX study. Br J Nutr 95:313–320

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Rambouskova J, Krskova A, Slavikova M, Cejchanova M, Wranova K, Prochazka B, Cerna M (2013) Trace elements in the blood of institutionalized elderly in the Czech Republic. Arch Gerontol Geriatr 56:389–394

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Rasmussen LB, Hollenbach B, Laurberg P, Carle A, Hog A, Jorgensen T, Vejbjerg P, Ovesen L, Schomburg L (2009) Serum selenium and selenoprotein P status in adult Danes—8-year followup. J Trace Elem Med Biol 23:265–271

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Alis R, Santos-Lozano A, Sanchis-Gomar F, Pareja-Galeano H, Fiuza-Luces C, Garatachea N, Lucia A, Emanuele E (2016) Trace elements levels in centenarian ‘dodgers. J Trace Elem Med Biol 35:103–106

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Savarino L, Granchi D, Ciapetti G, Cenni E, Ravaglia G, Forti P, Maioli F, Mattioli R (2001) Serum concentrations of zinc and selenium in elderly people: results in healthy nonagenarians/centenarians. Exp Gerontol 36:327–339

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Forte G, Deiana M, Pasella S, Baralla A, Occhineri P, Mura I, Madeddu R, Muresu E, Sotgia S, Zinellu A, Carru C, Bocca B, Deiana L (2014) Metals in plasma of nonagenarians and centenarians living in a key area of longevity. Exp Gerontol 60:197–206

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Max Rubner-Institut (Bundesforschungsinstitut für Ernährung und Lebensmittel) (2008) Nationale Verzehrsstudie II, Ergebnisbericht Teil 2. www.mri.bund.de/de/institute/ernaehrungsverhalten/forschungsprojekte/nvsii und https://www.mri.bund.de/fileadmin/MRI/Institute/EV/NVSII_Abschlussbericht_Teil_2.pdf. Zugegriffen: 29. Apr. 2020

  40. 40.

    Elmadfa I, Meyer AL, Kuen T, Wagner K, Hasenegger V (2017) Zinc intake and status in Austria in the light of different reference values. Int J Vitam Nutr Res 87:169–178

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153:1194–1217

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Lopez-Otin C, Galluzzi L, Freije JMP, Madeo F, Kroemer G (2016) Metabolic control of longevity. Cell 166:802–821

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Sies H, Berndt C, Jones DP (2017) Oxidative Stress. Annu Rev Biochem 86:715–748

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Bjelakovic G, Nikolova D, Gluud LL, Simonetti RG, Gluud C (2012) Antioxidant supplements for prevention of mortality in healthy participants and patients with various diseases. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD007176.pub2

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Rayman MP, Winther KH, Pastor-Barriuso R, Cold F, Thvilum M, Stranges S, Guallar E, Cold S (2018) Effect of long-term selenium supplementation on mortality: Results from a multiple-dose, randomised controlled trial. Free Radic Biol Med 127:46–54

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Cremonini AL, Caffa I, Cea M, Nencioni A, Odetti P, Monacelli F (2019) Nutrients in the prevention of alzheimer’s disease. Oxid Med Cell Longev 2019:9874159

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Steinbrenner H, Sies H (2013) Selenium homeostasis and antioxidant selenoproteins in brain: implications for disorders in the central nervous system. Arch Biochem Biophys 536:152–157

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Kryscio RJ, Abner EL, Caban-Holt A, Lovell M, Goodman P, Darke AK, Yee M, Crowley J, Schmitt FA (2017) Association of antioxidant supplement use and dementia in the prevention of alzheimer’s disease by vitamin E and selenium trial (PREADViSE). JAMA Neurol 74:567–573

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Gao S, Jin Y, Hall KS, Liang C, Unverzagt FW, Ji R, Murrell JR, Cao J, Shen J, Ma F, Matesan J, Ying B, Cheng Y, Bian J, Li P, Hendrie HC (2007) Selenium level and cognitive function in rural elderly Chinese. Am J Epidemiol 165:955–965

    PubMed  PubMed Central  Article  Google Scholar 

  50. 50.

    Shahar A, Patel KV, Semba RD, Bandinelli S, Shahar DR, Ferrucci L, Guralnik JM (2010) Plasma selenium is positively related to performance in neurological tasks assessing coordination and motor speed. Mov Disord 25:1909–1915

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Berr C, Arnaud J, Akbaraly TN (2012) Selenium and cognitive impairment: a brief-review based on results from the EVA study. Biofactors 38:139–144

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Kesse-Guyot E, Fezeu L, Jeandel C, Ferry M, Andreeva V, Amieva H, Hercberg S, Galan P (2011) French adults’ cognitive performance after daily supplementation with antioxidant vitamins and minerals at nutritional doses: a post hoc analysis of the Supplementation in Vitamins and Mineral Antioxidants (SU.VI.MAX) trial. Am J Clin Nutr 94:892–899

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Maylor EA, Simpson EE, Secker DL, Meunier N, Andriollo-Sanchez M, Polito A, Stewart-Knox B, Mcconville C, O’connor JM, Coudray C (2006) Effects of zinc supplementation on cognitive function in healthy middle-aged and older adults: the ZENITH study. Br J Nutr 96:752–760

    CAS  PubMed  Google Scholar 

  54. 54.

    Sensi SL, Granzotto A, Siotto M, Squitti R (2018) Copper and zinc dysregulation in alzheimer’s disease. Trends Pharmacol Sci 39:1049–1063

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Brewer GJ (2012) Copper excess, zinc deficiency, and cognition loss in Alzheimer’s disease. Biofactors 38:107–113

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    Nuttall JR, Oteiza PI (2014) Zinc and the aging brain. Genes Nutr 9:379

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Manolopoulos KN, Klotz LO, Korsten P, Bornstein SR, Barthel A (2010) Linking Alzheimer’s disease to insulin resistance: the FoxO response to oxidative stress. Mol Psychiatry 15:1046–1052

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Bedse G, Di Domenico F, Serviddio G, Cassano T (2015) Aberrant insulin signaling in Alzheimer’s disease: current knowledge. Front Neurosci 9:204

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Wang X, Wu W, Zheng W, Fang X, Chen L, Rink L, Min J, Wang F (2019) Zinc supplementation improves glycemic control for diabetes prevention and management: a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 110:76–90

    PubMed  Article  Google Scholar 

  60. 60.

    Maret W (2017) Zinc in pancreatic islet biology, insulin sensitivity, and diabetes. Prev Nutr Food Sci 22:1–8

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. 61.

    Steinbrenner H, Speckmann B, Pinto A, Sies H (2011) High selenium intake and increased diabetes risk: experimental evidence for interplay between selenium and carbohydrate metabolism. J Clin Biochem Nutr 48:40–45

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Stranges S, Marshall JR, Natarajan R, Donahue RP, Trevisan M, Combs GF, Cappuccio FP, Ceriello A, Reid ME (2007) Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 147:217–223

    PubMed  Article  Google Scholar 

  63. 63.

    Rayman MP, Stranges S (2013) Epidemiology of selenium and type 2 diabetes: can we make sense of it? Free Radic Biol Med 65:1557–1564

    CAS  PubMed  Article  Google Scholar 

Download references

Förderung

Arbeiten der Autoren werden von der Deutschen Forschungsgemeinschaft gefördert (Graduiertenkolleg 2155, ProMoAge).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prof. Dr. Lars-Oliver Klotz.

Ethics declarations

Interessenkonflikt

H. Steinbrenner und L.-O. Klotz geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Steinbrenner, H., Klotz, LO. Selen und Zink: „Antioxidanzien“ für ein gesundes Altern?. Z Gerontol Geriat 53, 295–302 (2020). https://doi.org/10.1007/s00391-020-01735-0

Download citation

Schlüsselwörter

  • Mikronährstoff
  • Nahrungsergänzungsmittel
  • Oxidation-Reduktion
  • Gehirn
  • Diabetes

Keywords

  • Micronutrient
  • Dietary supplements
  • Oxidation-reduction
  • Brain
  • Diabetes