Skip to main content

Spatiotemporal gait analysis of older persons in clinical practice and research

Which parameters are relevant?

Spatiotemporale Ganganalyse älterer Menschen in der klinischen Praxis und Forschung

Welche Parameter sind relevant?

Abstract

For older persons walking is a basic activity of daily life which characterizes the person’s functional mobility. Therefore, the improvement of walking performance is a major clinical outcome during geriatric rehabilitation. Furthermore, walking performance is relevant for several geriatric research issues. Quantitative gait analysis can describe walking performance in detail. Besides gait speed, various qualitative parameters related to different aspects of walking performance, such as symmetry, regularity, coordination, dynamic balance and foot movement during the swing phase, can serve as outcome parameters in geriatric research and in clinical practice. Clinicians and researchers have to decide which parameters are appropriate to be used as relevant outcome parameters in the investigated person or group of persons.

Zusammenfassung

Gehen ist eine Basisaktivität älterer Menschen, die auch den funktionalen Status der Mobilität beschreibt. Daher ist die Verbesserung der Gehfähigkeit ein wichtiges Ziel während der geriatrischen Rehabilitation. Darüber hinaus ist die Gehfähigkeit ein wichtiger Endpunkt für verschiedene geriatrische Forschungsprojekte. Durch quantitative Analysen kann das Gehen sehr detailliert beschrieben werden. Neben der Gehgeschwindigkeit können verschiedene qualitative Aspekte durch quantitative Parameter beschrieben und als Endpunkt für klinische Fragen oder Forschungsfragen genutzt werden. Diese Aspekte sind z. B. die Symmetrie, die Gleichmäßigkeit, die Koordination, die dynamische Balance und die Fußbewegung während der Schwungphase. In der klinischen Praxis und in der Forschung muss entschieden werden, welcher Parameter bei den untersuchten Patienten oder der untersuchten Studienpopulation für die jeweilige Fragestellung der richtige ist.

This is a preview of subscription content, access via your institution.

References

  1. Winter DA (1995) Human balance and posture control during standing and walking. Gait Posture 3(4):193–214

    Google Scholar 

  2. Aboutorabi A, Arazpour M, Bahramizadeh M, Hutchins SW, Fadayevatan R (2016) The effect of aging on gait parameters in able-bodied older subjects: a literature review. Aging Clin Exp Res 28(3):393–405

    PubMed  Google Scholar 

  3. Montero-Odasso M, Verghese J, Beauchet O, Hausdorff JM (2012) Gait and cognition: a complementary approach to understanding brain function and the risk of falling. J Am Geriatr Soc 60(11):2127–2136

    PubMed  PubMed Central  Google Scholar 

  4. Sustakoski A, Perera S, VanSwearingen JM, Studenski SA, Brach JS (2015) The impact of testing protocol on recorded gait speed. Gait Posture 41(1):329–331

    PubMed  Google Scholar 

  5. Beauchet O, Allali G, Sekhon H, Verghese J, Guilain S, Steinmetz J‑P et al (2017) Guidelines for assessment of gait and reference values for spatiotemporal gait parameters in older adults: the biomathics and Canadian gait consortiums initiative. Front Hum Neurosci 11:353

    PubMed  PubMed Central  Google Scholar 

  6. Kressig RW, Beauchet O (2006) Guidelines for clinical applications of spatio-temporal gait analysis in older adults. Aging Clin Exp Res 18:174–176

    PubMed  Google Scholar 

  7. Lindemann U, Najafi B, Zijlstra W, Hauer K, Muche R, Becker C et al (2008) Distance to achieve steady state walking speed in frail elderly persons. Gait Posture 27:91–96

    CAS  PubMed  Google Scholar 

  8. Helbostad JL, Moe-Nilssen R (2003) The effect of gait speed on lateral balance control during walking in healthy elderly. Gait Posture 18:27–36

    PubMed  Google Scholar 

  9. Keene DJ, Moe-Nilssen R, Lamb SE (2016) The application of multilevel modelling to account for the influence of walking speed in gait analysis. Gait Posture 43:216–219

    PubMed  Google Scholar 

  10. Brach JS, Perera S, VanSwearingen JM, Hile ES, Wert DM, Studenski SA (2011) Challenging gait conditions predict 1‑year decline in gait speed in older adults with apparently normal gait. Phys Ther 91(12):1857–1864

    PubMed  PubMed Central  Google Scholar 

  11. Al-Yahya E, Dawes H, Smith L, Dennis A, Howells K, Cockburn J (2011) Cognitive motor interference while walking: a systematic review and meta-analysis. Neurosci Biobehav Rev 35(3):715–728

    PubMed  Google Scholar 

  12. Theill N, Martin M, Schumacher V, Bridenbaugh SA, Kressig RW (2011) Simultaneously measuring gait and cognitive performance in cognitively healthy and cognitively impaired older adults: the Basel motor-cognition dual-task paradigm. J Am Geriatr Soc 59(6):1012–1018

    PubMed  Google Scholar 

  13. Zijlstra W, Aminian K (2007) Mobility assessment in older people: new possibilities and challenges. Eur J Ageing 4(1):3–12

    PubMed  PubMed Central  Google Scholar 

  14. Najafi B, Aminian K, Paraschiv-Ionescu A, Loew F, Bula CJ, Robert P (2003) Ambulatory system for human motion analysis using a kinematic sensor: monitoring of daily physical activity in the elderly. IEEE Trans Biomed Eng 50:711–723

    PubMed  Google Scholar 

  15. Taraldsen K, Askim T, Sletvold O, Einarsen EK, Gruner BK, Indredavik B et al (2011) Evaluation of a body-worn sensor system to measure physical activity in older people with impaired function. Phys Ther 91:277–285

    PubMed  Google Scholar 

  16. Moe-Nilssen R, Helbostad JL (2004) Estimation of gait cycle characteristics by trunk accelerometry. J Biomech 37:121–126

    PubMed  Google Scholar 

  17. Zijlstra A, Zijlstra W (2013) Trunk-acceleration based assessment of gait parameters in older persons: A comparison of reliability and validity of four inverted pendulum based estimations. Gait Posture 38:940–944

    PubMed  Google Scholar 

  18. Zijlstra W (2004) Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol 92:39–44

    PubMed  Google Scholar 

  19. Storm FA, Nair KPS, Clarke AJ, Van der Meulen JM, Mazzà C (2018) Free-living and laboratory gait characteristics in patients with multiple sclerosis. PLoS ONE 13(5):e196463

    PubMed  PubMed Central  Google Scholar 

  20. Del Din S, Godfrey A, Galna B, Lord S, Rochester L (2016) Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J Neuroeng Rehabil 13(1):46

    PubMed  PubMed Central  Google Scholar 

  21. Paraschiv-Ionescu A, Perruchoud C, Buchser E, Aminian K (2012) Barcoding human physical activity to assess chronic pain conditions. PLoSOne 7:e32239

    CAS  Google Scholar 

  22. Studenski S, Perera S, Patel K, Rosano C, Faulkner K, Inzitari M et al (2011) Gait speed and survival in older adults. JAMA 305(1):50–58

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cesari M, Kritchevsky SB, Penninx BWHJ, Nicklas BJ, Simonsick EM, Newman AB et al (2005) Prognostic value of usual gait speed in well-functioning older people—results from the Health, Aging and Body Composition Study. J Am Geriatr Soc 53(10):1675–1680

    PubMed  Google Scholar 

  24. Schoon Y, Bongers K, Van Kempen J, Melis R, Rikkert OM (2014) Gait speed as a test for monitoring frailty in community-dwelling older people has the highest diagnostic value compared to step length and chair rise time. Eur J Phys Rehabil Med 50(6):693–701

    CAS  PubMed  Google Scholar 

  25. Quach L, Galica AM, Jones RN, Procter-Gray E, Manor B, Hannan MT et al (2011) The nonlinear relationship between gait speed and falls: the Maintenance of Balance, Independent Living, Intellect, and Zest in the Elderly of Boston Study. J Am Geriatr Soc 59(6):1069–1073

    PubMed  PubMed Central  Google Scholar 

  26. Verghese J, Holtzer R, Lipton RB, Wang C (2009) Quantitative gait markers and incident fall risk in older adults. J Gerontol A Biol Sci Med Sci 64:896–901

    PubMed  Google Scholar 

  27. Bahureksa L, Najafi B, Saleh A, Sabbagh M, Coon D, Mohler MJ et al (2017) The impact of mild cognitive impairment on gait and balance: a systematic review and meta-analysis of studies using instrumented assessment. Gerontology 63(1):67–83

    PubMed  Google Scholar 

  28. Morris R, Lord S, Bunce J, Burn D, Rochester L (2016) Gait and cognition: mapping the global and discrete relationships in ageing and neurodegenerative disease. Neurosci Biobehav Rev 64:326–345

    PubMed  Google Scholar 

  29. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X (2007) Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry 78:929–935

    PubMed  PubMed Central  Google Scholar 

  30. Bohannon RW (1997) Comfortable and maximum walking speed of adults aged 20–79 years: reference values and determinants. Age Ageing 26:15–19

    CAS  PubMed  Google Scholar 

  31. Hollman JH, McDade EM, Petersen RC (2011) Normative spatiotemporal gait parameters in older adults. Gait Posture 34(1):111–118

    PubMed  PubMed Central  Google Scholar 

  32. Oh-Park M, Holtzer R, Xue X, Verghese J (2010) Conventional and robust quantitative gait norms in community-dwelling older adults. J Am Geriatr Soc 58(8):1512–1518

    PubMed  PubMed Central  Google Scholar 

  33. Bohannon RW, Glenney SS (2014) Minimal clinically important difference for change in comfortable gait speed of adults with pathology: a systematic review. J Eval Clin Pract 20(4):295–300

    PubMed  Google Scholar 

  34. Perera S, Mody SH, Woodman RC, Studenski SA (2006) Meaningful change and responsiveness in common physical performance measures in older adults. J Am Geriatr Soc 54:743–749

    PubMed  Google Scholar 

  35. Cha H‑G, Kim T‑H, Kim M‑K (2016) Therapeutic efficacy of walking backward and forward on a slope in normal adults. J Phys Ther Sci 28(6):1901–1903

    PubMed  PubMed Central  Google Scholar 

  36. Elboim-Gabyzon M, Rotchild S (2017) Spatial and temporal gait characteristics of elderly individuals during backward and forward walking with shoes and barefoot. Gait Posture 52:363–366

    PubMed  Google Scholar 

  37. Sekiya N, Nagasaki H (1998) Reproducibility of the walking patterns of normal young adults: test-retest reliability of the walk ratio(step-length/step-rate). Gait Posture 7:225–227

    CAS  PubMed  Google Scholar 

  38. Zijlstra A, de Bruin ED, Bruins N, Zijlstra W (2008) The step length-frequency relationship in physically active community-dwelling older women. Eur J Appl Physiol 104(3):427–434

    PubMed  Google Scholar 

  39. Collins SH, Kuo AD (2013) Two independent contributions to step variability during over-ground human walking. PLoS ONE 8(8):e73597

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L (2013) Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol A Biol Sci Med Sci 68(7):820–827

    PubMed  Google Scholar 

  41. Thingstad P, Egerton T, Ihlen EF, Taraldsen K, Moe-Nilssen R, Helbostad JL (2015) Identification of gait domains and key gait variables following hip fracture. BMC Geriatr 15:150

    PubMed  PubMed Central  Google Scholar 

  42. Horak FB, Mancini M (2013) Objective biomarkers of balance and gait for Parkinson’s disease using body-worn sensors. Mov Disord 28(11):1544–1551

    PubMed  PubMed Central  Google Scholar 

  43. Sadeghi H, Allard P, Prince F, Labelle H (2000) Symmetry and limb dominance in able-bodied gait: a review. Gait Posture 12(1):34–45

    CAS  PubMed  Google Scholar 

  44. Allen JL, Kautz SA, Neptune RR (2011) Step length asymmetry is representative of compensatory mechanisms used in post-stroke hemiparetic walking. Gait Posture 33(4):538–543

    PubMed  PubMed Central  Google Scholar 

  45. Galea MP, Levinger P, Lythgo N, Cimoli C, Weller R, Tully E et al (2008) A targeted home- and center-based exercise program for people after total hip replacement: a randomized clinical trial. Arch Phys Med Rehabil 89(8):1442–1447

    PubMed  Google Scholar 

  46. Hak L, van Dieën JH, van der Wurff P, Houdijk H (2014) Stepping asymmetry among individuals with unilateral transtibial limb loss might be functional in terms of gait stability. Phys Ther 94(10):1480–1488

    PubMed  Google Scholar 

  47. Hodt-Billington C, Helbostad JL, Vervaat W, Rognsvåg T, Moe-Nilssen R (2012) Criteria of gait asymmetry in patients with hip osteoarthritis. Physiother Theory Pract 28(2):134–141

    PubMed  Google Scholar 

  48. Isakov E, Burger H, Krajnik J, Gregoric M, Marincek C (1997) Double-limb support and step-length asymmetry in below-knee amputees. Scand J Rehabil Med 29(2):75–79

    CAS  PubMed  Google Scholar 

  49. Lewek MD, Bradley CE, Wutzke CJ, Zinder SM (2014) The relationship between spatiotemporal gait asymmetry and balance in individuals with chronic stroke. J Appl Biomech 30(1):31–36

    PubMed  Google Scholar 

  50. Plotnik M, Bartsch RP, Zeev A, Giladi N, Hausdorff JM (2013) Effects of walking speed on asymmetry and bilateral coordination of gait. Gait Posture 38(4):864–869

    PubMed  PubMed Central  Google Scholar 

  51. Hodt-Billington C, Helbostad JL, Moe-Nilssen R (2008) Should trunk movement or footfall parameters quantify gait asymmetry in chronic stroke patients? Gait Posture 27(4):552–558

    PubMed  Google Scholar 

  52. O’Connor SM, Xu HZ, Kuo AD (2012) Energetic cost of walking with increased step variability. Gait Posture 36(1):102–107

    PubMed  PubMed Central  Google Scholar 

  53. Callisaya ML, Blizzard L, Schmidt MD, Martin KL, McGinley JL, Sanders LM et al (2011) Gait, gait variability and the risk of multiple incident falls in older people: a population-based study. Age Ageing 40:481–487

    PubMed  Google Scholar 

  54. Hausdorff JM, Rios DA, Edelberg HK (2001) Gait variability and fall risk in community-living older adults: a 1-year prospective study. Arch Phys Med Rehabil 82:1050–1056

    CAS  PubMed  Google Scholar 

  55. Maki BE (1997) Gait changes in older adults: predictors of falls or indicators of fear. J Am Geriatr Soc 45:313–320

    CAS  PubMed  Google Scholar 

  56. Moe-Nilssen R, Aaslund MK, Hodt-Billington C, Helbostad JL (2010) Gait variability measures may represent different constructs. Gait Posture 32:98–101

    PubMed  Google Scholar 

  57. Brach JS, Berlin JE, VanSwearingen JM, Newman AB, Studenski SA (2005) Too much or too little step width variability is associated with a fall history in older persons who walk at or near normal gait speed. J Neuroeng Rehabil 2:21

    PubMed  PubMed Central  Google Scholar 

  58. Lindemann U, Klenk J, Becker C, Moe-Nilssen R (2013) Assessment of adaptive walking performance. Med Eng Phys 35:217–220

    CAS  PubMed  Google Scholar 

  59. Heeren A, van Ooijen M, Geurts ACH, Day BL, Janssen TWJ, Beek PJ et al (2013) Step by step: a proof of concept study of C‑Mill gait adaptability training in the chronic phase after stroke. J Rehabil Med 45(7):616–622

    PubMed  Google Scholar 

  60. Lo O‑Y, van Donkelaar P, Chou L‑S (2015) Distracting visuospatial attention while approaching an obstacle reduces the toe-obstacle clearance. Exp Brain Res 233(4):1137–1144

    PubMed  Google Scholar 

  61. Mariani B, Hoskovec C, Rochat S, Büla C, Penders J, Aminian K (2010) 3D gait assessment in young and elderly subjects using foot-worn inertial sensors. J Biomech 43(15):2999–3006

    PubMed  Google Scholar 

  62. Egerton T, Danoudis M, Huxham F, Iansek R (2011) Central gait control mechanisms and the stride length—cadence relationship. Gait Posture 34(2):178–182

    PubMed  Google Scholar 

  63. Lindemann U, Nicolai S, Beische D, Becker C, Srulijes K, Dietzel E et al (2010) Clinical and dual-tasking aspects in frequent and infrequent fallers with progressive supranuclear palsy. Mov Disord 25:1040–1046

    PubMed  Google Scholar 

  64. Giladi N, Herman T, Reider-Groswasser II, Gurevich T, Hausdorff JM (2005) Clinical characteristics of elderly patients with a cautious gait of unknown origin. J Neurol 252(3):300–306

    CAS  PubMed  Google Scholar 

  65. Eppeland SG, Myklebust G, Hodt-Billington C, Moe-Nilssen R (2009) Gait patterns in subjects with rheumatoid arthritis cannot be explained by reduced speed alone. Gait Posture 29(3):499–503

    CAS  PubMed  Google Scholar 

  66. Morris ME, Iansek R, Matyas TA, Summers JJ (1994) The pathogenesis of gait hypokinesia in Parkinson’s disease. Brain 117:1169–1181

    PubMed  Google Scholar 

  67. Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM (2005) Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 57(3 Suppl):S4–S16

    PubMed  Google Scholar 

  68. Danoudis M, Iansek R (2014) Gait in Huntington’s disease and the stride length-cadence relationship. BMC Neurol 14:161

    PubMed  PubMed Central  Google Scholar 

  69. Egerton T, Williams DR, Iansek R (2012) Comparison of gait in progressive supranuclear palsy, Parkinson’s disease and healthy older adults. BMC Neurol 12:116

    PubMed  PubMed Central  Google Scholar 

  70. Rota V, Perucca L, Simone A, Tesio L (2011) Walk ratio (step length/cadence) as a summary index of neuromotor control of gait: application to multiple sclerosis. Int J Rehabil Res 34(3):265–269

    PubMed  Google Scholar 

  71. Bauby CE, Kuo AD (2000) Active control of lateral balance in human walking. J Biomech 33(11):1433–1440

    CAS  PubMed  Google Scholar 

  72. O’Connor SM, Kuo AD (2009) Direction-dependent control of balance during walking and standing. J Neurophysiol 102(3):1411–1419

    PubMed  PubMed Central  Google Scholar 

  73. Nordin E, Moe-Nilssen R, Ramnemark A, Lundin-Olsson L (2010) Changes in step-width during dual-task walking predicts falls. Gait Posture 32(1):92–97

    CAS  PubMed  Google Scholar 

  74. Owings TM, Grabiner MD (2004) Step width variability, but not step length variability or step time variability, discriminates gait of healthy young and older adults during treadmill locomotion. J Biomech 37(6):935–938

    PubMed  Google Scholar 

  75. Owings TM, Grabiner MD (2004) Variability of step kinematics in young and older adults. Gait Posture 20:26–29

    PubMed  Google Scholar 

  76. Brach JS, Berthold R, Craik R, VanSwearingen JM, Newman AB (2001) Gait variability in community-dwelling older adults. J Am Geriatr Soc 49(12):1646–1650

    CAS  PubMed  Google Scholar 

  77. Hak L, Houdijk H, Steenbrink F, Mert A, van der Wurff P, Beek PJ et al (2012) Speeding up or slowing down?: Gait adaptations to preserve gait stability in response to balance perturbations. Gait Posture 36(2):260–264

    PubMed  Google Scholar 

  78. McAndrew Young PM, Dingwell JB (2012) Voluntary changes in step width and step length during human walking affect dynamic margins of stability. Gait Posture 36(2):219–224

    PubMed  Google Scholar 

  79. Helbostad JL, Leirfall S, Moe-Nilssen R, Sletvold O (2007) Physical fatigue affects gait characteristics in older persons. J Gerontol A Biol Sci Med Sci 62:1010–1015

    PubMed  Google Scholar 

  80. Moe-Nilssen R (1998) A new method for evaluating motor control in gait under real-life environmental conditions. Part 2: Gait analysis. Clin Biomech 13(4–5):328–335

    Google Scholar 

  81. Almarwani M, VanSwearingen JM, Perera S, Sparto PJ, Brach JS (2016) Challenging the motor control of walking: gait variability during slower and faster pace walking conditions in younger and older adults. Arch Gerontol Geriatr 66:54–61

    PubMed  Google Scholar 

  82. Lewek MD, Osborn AJ, Wutzke CJ (2012) The influence of mechanically and physiologically imposed stiff-knee gait patterns on the energy cost of walking. Arch Phys Med Rehabil 93(1):123–128

    PubMed  Google Scholar 

  83. Barrett RS, Mills PM, Begg RK (2010) A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait Posture 32(4):429–435

    CAS  PubMed  Google Scholar 

  84. Pan H‑F, Hsu H‑C, Chang W‑N, Renn J‑H, Wu H‑W (2016) Strategies for obstacle crossing in older adults with high and low risk of falling. J Phys Ther Sci 28(5):1614–1620

    PubMed  PubMed Central  Google Scholar 

  85. Dadashi F, Mariani B, Rochat S, Büla CJ, Santos-Eggimann B, Aminian K (2013) Gait and foot clearance parameters obtained using shoe-worn inertial sensors in a large-population sample of older adults. Sensors (Basel) 14(1):443–457

    Google Scholar 

  86. Qian J‑G, Rong K, Qian Z, Wen C, Zhang S (2015) Effects of a multichannel dynamic functional electrical stimulation system on hemiplegic gait and muscle forces. J Phys Ther Sci 27(11):3541–3544

    PubMed  PubMed Central  Google Scholar 

  87. Donath L, Faude O, Lichtenstein E, Nüesch C, Mündermann A (2016) Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill. J Neuroeng Rehabil 13:6

    PubMed  PubMed Central  Google Scholar 

  88. Lindemann U, Oksa J, Skelton DA, Beyer N, Klenk J, Zscheile J et al (2014) Effect of cold indoor environment on physical performance of older women living in the community. Age Ageing 43(4):571–575

    PubMed  Google Scholar 

Download references

Acknowledgements

Ellen Freiberger and Stephanie Bridenbaugh critically read the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Lindemann.

Ethics declarations

Conflict of interest

U. Lindemann declares that he has no competing interests.

The underlying study showing the independence of parameters was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the ethics committee of the University of Tübingen (578/2011/BO2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lindemann, U. Spatiotemporal gait analysis of older persons in clinical practice and research. Z Gerontol Geriat 53, 171–178 (2020). https://doi.org/10.1007/s00391-019-01520-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-019-01520-8

Keywords

  • Gait speed
  • Symmetry
  • Regularity
  • Coordination
  • Dynamic balance

Schlüsselwörter

  • Gehgeschwindigkeit
  • Symmetrie
  • Gleichmäßigkeit
  • Koordination
  • Dynamische Balance