Advertisement

Zeitschrift für Gerontologie und Geriatrie

, Volume 51, Issue 5, pp 567–572 | Cite as

Prevalence of vitamin D insufficiency and evidence for disease prevention in the older population

  • Julia Kühn
  • Paula Trotz
  • Gabriele I. Stangl
Reviews
  • 206 Downloads

Abstract

The prevalence of vitamin D insufficiency, usually assessed by the analysis of circulating 25-hydroxyvitamin D (25[OH])D), is very high in the aging German population. An important factor that reduces endogenous vitamin D synthesis in older persons is physical inactivity or care-dependency that limits the time spent outside. Additionally, it has been suggested that the age-dependent decline in the glomerular filtration rate is associated with a reduced production of bioactive calcitriol. As this phenomenon is not detectable by the assessment of 25(OH)D, it is necessary to analyze the level of parathyroid hormone as a marker of calcitriol function. Because 25(OH)D levels are highly correlated with an active and healthy life style, data from epidemiological studies are not necessarily suitable to elucidate the role of vitamin D in disease prevention. Recently published meta-analyses of randomized controlled trials (RCTs) showed moderate effects of vitamin D supplementation on fracture risk and found that vitamin D was more effective when administered in combination with calcium. The role of vitamin D in the prevention of falls and frailty remains unclear. Much evidence has demonstrated the beneficial effects of vitamin D on respiratory tract infections and asthma, which are very relevant health issues in the older population. To conclude, vitamin D, particularly combined with calcium, has moderately beneficial effects on the skeletal system and is useful for the prevention of respiratory tract infections.

Keywords

Vitamin D Bone fractures Accidental falls Frailty Respiratory tract infections 

Prävalenz für Vitamin-D-Insuffizienz und Evidenz für Krankheitsprävention bei der älteren Population

Zusammenfassung

Die Prävalenz für Vitamin-D-Insuffizienz, welche üblicherweise anhand des zirkulierenden 25-Hydroxyvitamin D (25[OH]D) ermittelt wird, ist in der alternden deutschen Bevölkerung sehr hoch. Ein wichtiger Faktor, der die endogene Vitamin-D-Synthese bei älteren Menschen reduziert, ist der verminderte Aufenthalt im Freien, bedingt durch körperliche Inaktivität oder Pflegebedürftigkeit. Darüber hinaus wird vermutet, dass die altersabhängige Abnahme der glomerulären Filtrationsrate mit einer verminderten Produktion des bioaktiven Calcitriols einhergeht. Da dieses Phänomen nicht durch die Analyse von 25(OH)D nachweisbar ist, ist es empfehlenswert, Parathormon als Marker für die Calcitriol-Funktion zu messen. Bedingt durch den Umstand, dass die 25(OH)D-Spiegel in hohem Maße mit einem aktiven und gesunden Lebensstil korrelieren, sind Daten aus epidemiologischen Studien nicht unbedingt geeignet, die Bedeutung von Vitamin D für die Krankheitsprävention aufzuzeigen. Aktuell publizierte Metaanalysen von randomisierten kontrollierten Studien zeigen moderat positive Effekte von Vitamin D auf das Frakturrisiko, insbesondere, wenn gleichzeitig Kalzium verabreicht wird. Die Rolle von Vitamin D bei der Prävention von Stürzen und Gebrechlichkeit bleibt unklar. Die größte Evidenz für vorteilhafte Vitamin D-Wirkungen wurde für Infektionen der Atemwege und Asthma gezeigt. Bei beiden Erkrankungen handelt sich um äußerst relevante Gesundheitsprobleme bei älteren Menschen. Zusammenfassend ist festzuhalten, dass Vitamin D, besonders in Kombination mit Kalzium, wahrscheinlich moderat positive Effekte auf die Knochengesundheit hat und auch vor Atemwegsinfektionen schützt.

Schlüsselwörter

Vitamin D Knochenfrakturen Stürze Gebrechlichkeit Atemwegsinfektionen 

Notes

Compliance with ethical guidelines

Conflict of interest

J. Kühn, P. Trotz and G.I. Stangl declare that they have no competing interests.

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Chen TC, Chimeh F, Lu Z, Mathieu J, Person KS, Zhang A, Kohn N, Martinello S, Berkowitz R, Holick MF (2007) Factors that influence the cutaneous synthesis and dietary sources of vitamin D. Arch Biochem Biophys 460(2):213–217.  https://doi.org/10.1016/j.abb.2006.12.017 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Jakobsen J, Saxholt E (2009) Vitamin D metabolites in bovine milk and butter. J Food Compost Anal 22(5):472–478. https://doi.org/10.1016/j.jfca .2009.01.010CrossRefGoogle Scholar
  3. 3.
    Kühn J, Schutkowski A, Kluge H, Hirche F, Stangl GI (2014) Free-range farming: a natural alternative to produce vitamin D‑enriched eggs. Nutrition 30(4):481–484.  https://doi.org/10.1016/j.nut.2013.10.002 CrossRefPubMedGoogle Scholar
  4. 4.
    Ross AC, Taylo CL, Yaktine AL, Valle HB (2011) Dietary Reference Intakes for Calcium and Vitamin D: Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. The National Academies Collection. The National Academies Collection: reports funded by National Institutes of Health.. National Academies Press, Washington D.C.Google Scholar
  5. 5.
    Cashman KD, Hill TR, Lucey AJ, Taylor N, Seamans KM, Muldowney S, FitzGerald AP, Flynn A, Barnes MS, Horigan G, Bonham MP, Duffy EM, Strain JJ, Wallace JMW, Kiely M (2008) Estimation of the dietary requirement for vitamin D in healthy adults. Am J Clin Nutr 88(6):1535–1542.  https://doi.org/10.3945/ajcn.2008.26594 CrossRefPubMedGoogle Scholar
  6. 6.
    Blum M, Dallal GE, Dawson-Hughes B (2008) Body size and serum 25 hydroxy vitamin D response to oral supplements in healthy older adults. J Am Coll Nutr 27(2):274–279.  https://doi.org/10.1080/07315724.2008.10719700 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Didriksen A, Grimnes G, Hutchinson MS, Kjærgaard M, Svartberg J, Joakimsen RM, Jorde R (2013) The serum 25-hydroxyvitamin D response to vitamin D supplementation is related to genetic factors, BMI, and baseline levels. Eur J Endocrinol 169(5):559–567.  https://doi.org/10.1530/EJE-13-0233 CrossRefPubMedGoogle Scholar
  8. 8.
    Waterhouse M, Tran B, Armstrong BK, Baxter C, Ebeling PR, English DR, Gebski V, Hill C, Kimlin MG, Lucas RM, Venn A, Webb PM, Whiteman DC, Neale RE (2014) Environmental, personal, and genetic determinants of response to vitamin D supplementation in older adults. J Clin Endocrinol Metab 99(7):1332–1340.  https://doi.org/10.1210/jc.2013-4101 CrossRefGoogle Scholar
  9. 9.
    Saliba W, Barnett-Griness O, Rennert G (2013) The relationship between obesity and the increase in serum 25(OH)D levels in response to vitamin D supplementation. Osteoporos Int 24(4):1447–1454.  https://doi.org/10.1007/s00198-012-2129-0 CrossRefPubMedGoogle Scholar
  10. 10.
    Lehmann U, Riedel A, Hirche F, Brandsch C, Girndt M, Ulrich C, Seibert E, Henning C, Glomb MA, Dierkes J, Stangl GI (2016) Vitamin D3 supplementation: response and predictors of vitamin D3 metabolites A randomized controlled trial. Clin Nutr 35(2):351–358.  https://doi.org/10.1016/j.clnu.2015.04.021 CrossRefPubMedGoogle Scholar
  11. 11.
    Rabenberg M, Scheidt-Nave C, Busch MA, Rieckmann N, Hintzpeter B, Mensink GB (2015) Vitamin D status among adults in Germany—results from the German Health Interview and Examination Survey for Adults (DEGS1). BMC Public Health 15:641.  https://doi.org/10.1186/s12889-015-2016-7 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Conzade R, Koenig W, Heier M, Schneider A, Grill E, Peters A, Thorand B (2017) Prevalence and predictors of subclinical micronutrient deficiency in German older adults: results from the population-based KORA-Age study. Nutrients 9(12):E1276.  https://doi.org/10.3390/nu9121276 CrossRefPubMedGoogle Scholar
  13. 13.
    MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3. J Clin Invest 76(4):1536–1538.  https://doi.org/10.1172/JCI112134 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Holick MF, Matsuoka LY, Wortsman J (1989) Age, vitamin D, and solar ultraviolet. Lancet 334(xxx):1104–1105.  https://doi.org/10.1016/S0140-6736(89)91124-0 CrossRefGoogle Scholar
  15. 15.
    Davie M, Lawson DE (1980) Assessment of plasma 25-hydroxyvitamin D response to ultraviolet irradiation over a controlled area in young and elderly subjects. Clin Sci 58(3):235–242.  https://doi.org/10.1042/cs0580235 CrossRefPubMedGoogle Scholar
  16. 16.
    Tsai KS, Heath H 3rd, Kumar R, Riggs BL (1984) Impaired vitamin D metabolism with aging in women. Possible role in pathogenesis of senile osteoporosis. J Clin Invest 73(6):1668–1672.  https://doi.org/10.1172/JCI111373 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gallagher JC, Yalamanchili V, Smith L (2012) The effect of vitamin D on calcium absorption in older women. J Clin Endocrinol Metab 97(10):3550–3556.  https://doi.org/10.1210/jc.2012-2020 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Steingrimsdottir L, Halldorsen TI, Siggeirsdottir K, Cotch MF, Einarsdottir BO, Eiriksdottir G, Sigurdsson S, Launer LJ, Harris TB, Gudnason V, Sigurdsson G (2014) Hip fractures and bone mineral density in the elderly—importance of serum 25-hydoxyvitamin D. PLoS ONE 9(3):e91122.  https://doi.org/10.1371/journal.pone.0091122 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Swanson CM, Srikanth P, Lee CG, Cummings SR, Jans I, Cauley JA, Bouillon R, Vanderschueren D, Orwoll ES, Nielson CM, Osteoporotic Fractures in Men MrOS Study Research Group (2015) Associations of 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D with bone mineral density, bone mineral density change, and incident nonvertebral fracture. J Bone Miner Res 30(8):1403–1413.  https://doi.org/10.1002/jbmr.2487 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Rahme M, Sharara SL, Baddoura R, Habib RH, Halaby G, Arabi A, Singh RJ, Kassem M, Mahfoud Z, Hoteit M, Daher RT, Bassil D, El Ferkh K, Fuleihan GE (2017) Impact of calcium and two doses of vitamin D on bone metabolism in the elderly: a randomized controlled trial. J Bone Miner Res 32(7):1486–1495.  https://doi.org/10.1002/jbmr.3122 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Lai JKC, Lucas RM, Clements MS, Roddam AW, Banks E (2010) Hip fracture risk in relation to vitamin D supplementation and serum 25-hydroxyvitamin D levels: a systematic review and meta-analysis of randomised controlled trails and observational studies. BMC Public Health 10:331.  https://doi.org/10.1186/1471-2458-10-331 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Feng Y, Cheng G, Wang H, Chen B (2017) The association between serum 25-hydroxyvitamin D level and the risk of total fracture and hip fracture. Osteoporos Int 28(59):1641–1652.  https://doi.org/10.1007/s00198-017-3955-x CrossRefPubMedGoogle Scholar
  23. 23.
    Zheng YT, Cui QQ, Hong YM, Yao WG (2015) A meta-analysis of high dose, intermittent vitamin D supplementation among older adults. PLoS ONE 10(1):e115850.  https://doi.org/10.1371/journal.pone.0115850 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zhao JG, Zeng XT, Wang J, Liu L (2017) Association between calcium or vitamin D supplementation and fracture incidence in community-dwelling older adults: a systematic review and meta-analysis. JAMA 318(24):2466–2482.  https://doi.org/10.1001/jama.2017.19344 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Bischoff-Ferrari HA, Willett WC, Orav EJ, Lips P, Meunier PJ, Lyons RA, Flicker L, Wark J, Jackson RD, Cauley JA, Meyer HE, Pfeifer M, Sanders KM, Stähelin HB, Theiler R, Dawson-Hughes B (2012) A pooled analysis of vitamin D dose requirements for fracture prevention. N Engl J Med 367(1):40–49.  https://doi.org/10.1056/NEJMoa1109617 CrossRefPubMedGoogle Scholar
  26. 26.
    Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P (2007) Need for additional calcium to reduce the risk of hip fracture with vitamin D supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab 92(4):1415–1423.  https://doi.org/10.1210/jc.2006-1404 CrossRefPubMedGoogle Scholar
  27. 27.
    Avenell A, Gillespie WJ, Gillespie LD, O’Connell D (2009) Vitamin D and vitamin D analogues for preventing fractures associated with involutional and post-menopausal osteoporosis. Cochrane Database Syst Rev 3.  https://doi.org/10.1002/14651858.CD000227.pub2 CrossRefPubMedGoogle Scholar
  28. 28.
    DIPART Group (2010) Patient level pooled analysis of 68500 patients from seven major vitamin D fracture trails in US and Europe. BMJ 340:b5463.  https://doi.org/10.1136/bmj.b5463 CrossRefGoogle Scholar
  29. 29.
    Cranney A, Jamal SA, Tsang JF, Josse RG, Leslie WD (2007) Low bone mineral density and fracture burden in postmenopausal woman. CMAJ 177(6):575–580.  https://doi.org/10.1503/cmaj.070234 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Mussawy H, Ferrari G, Schmidt FN, Schmidt T, Rolvien T, Hischke S, Rüther W, Amling M (2017) Changes in cortical microarchitecture are independent of areal bone mineral density in patients with fragility fractures. Injury 48(11):2461–2465.  https://doi.org/10.1016/j.injury.2017.08.043 CrossRefPubMedGoogle Scholar
  31. 31.
    Bischoff HA, Staehelin HB, Urscheler N, Ehrsam R, Vonthein R, Perrig-Chiello P, Tyndall A, Theiler R (1999) Muscle strength in the elderly: its relation to vitamin D metabolites. Arch Phys Med Rehabil 80(1):54–58.  https://doi.org/10.1016/S0003-9993(99)90307-6 CrossRefPubMedGoogle Scholar
  32. 32.
    Hirani V, Cumming RG, Naganathan V, Blyth F, Le Couteur DG, Handelsman DJ, Waite LM, Seibel MJ (2014) Associations between serum 25-hydroxyvitamin D concentrations and multiple health conditions, physical performance measures disability, and all-cause mortality: the Concord Health and Aging in Men Project. J Am Geriatr Soc 62(3):417–425.  https://doi.org/10.1111/jgs.12693 CrossRefPubMedGoogle Scholar
  33. 33.
    Orces CH (2017) Prevalence of clinically relevant muscle weakness and its association with vitamin D status among older adults in Ecuado. Aging Clin Exp Res 29(5):943–949.  https://doi.org/10.1007/s40520-016-0678-3 CrossRefPubMedGoogle Scholar
  34. 34.
    Jackson C, Gaugris S, Sen SS, Hoskin D (2007) The effect of cholecalciferol (vitamin D3) on the risk of fall and fracture: a meta-analysis. Q J Med 100(4):185–192.  https://doi.org/10.1093/qjmed/hcm005 CrossRefGoogle Scholar
  35. 35.
    Bischoff-Ferrari HA, Dawson-Hughes B, Staehelin HB, Orav JE, Stuck AE, Theiler R, Wong JB, Egli A, Kiel DP, Henschkowski J (2009) Fall prevention with supplemental and active forms of vitamin D: a meta-analysis of randomised controlled trials. BMJ 339:b3692.  https://doi.org/10.1136/bmj.b3692 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Murad MH, Elamin KB, Elnour NOA, Elamin MB, Alkatib AA, Fatourechi MM, Almandoz JP, Mullan RJ, Lane MA, Liu H, Erwin PJ, Hensrud DD, Montori VM (2011) The effect of vitamin D on falls: a systematic review and meta-analysis. J Clin Endocrinol Metab 96(10):2997–3006.  https://doi.org/10.1210/jc.2011-1193 CrossRefPubMedGoogle Scholar
  37. 37.
    Stubbs B, Denkinger MD, Brefka S, Dallmeier D (2015) What works to prevent falls in older adults dwelling in long term care facilities and hospitals? An umbrella review of meta-analyses of randomised controlled trials. Maturitas 81(3):335–342.  https://doi.org/10.1016/j.maturitas.2015.03.026 CrossRefPubMedGoogle Scholar
  38. 38.
    Bischoff-Ferrari HA, Borchers M, Gudat F, Dürmüller U, Stähelin HB, Dick W (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19(2):265–269.  https://doi.org/10.1359/jbmr.2004.19.2.265 CrossRefPubMedGoogle Scholar
  39. 39.
    Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, Mc Burnie MA (2001) Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci 56(3):146–156.  https://doi.org/10.1093/gerona/56.3.M146 CrossRefGoogle Scholar
  40. 40.
    Zhou J, Hunag P, Liu P, Hao Q, Chen S, Dong B, Wang J (2016) Association of vitamin D deficiency and frailty: a systematic review and meta-analysis. Maturitas 94:70–76.  https://doi.org/10.1016/j.maturitas.2016.09.003 CrossRefPubMedGoogle Scholar
  41. 41.
    Autier P, Mullie P, Macacu A, Dragomir M, Boniol M, Coppens K, Pizot C, Boniol M (2017) Effect of vitamin D supplementation on non-skeletal disorders: a systematic review of meta-analyses and randomised trials. Lancet Diabetes Endocrinol 5(12):986–1004.  https://doi.org/10.1016/S2213-8587(17)30357-1 CrossRefPubMedGoogle Scholar
  42. 42.
    Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, Goodall EC, Grant CC, Griffiths CJ, Janssens W, Laaksi I, Manaseki-Holland S, Mauger D, Mordoch DR, Neale R, Rees JR, Simpson S, Stelmach I, Kumar GT, Urashima M, Camargo CA (2017) Vitamin D supplementation to prevent acute respiratory tract infections: systematic review and meta-analysis of individual participant data. BMJ 356:i6583.  https://doi.org/10.1136/bmj.i6583 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Bergman P, Lindh AU, Bkörkhem-Bergman L, Lindh JD (2013) Vitamin D and respiratory tract infections: a systematic review and meta-analysis of randomized controlled trials. PLoS ONE 8(6):e65835.  https://doi.org/10.1371/journal.pone.0065835 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Fajuyigbe D, Young AR (2016) The impact of skin colour on human photobiological responses. Pigment Cell Melanoma Res 29(6):607–618.  https://doi.org/10.1111/pcmr.12511 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Greinert R, de Vries E, Erdmann F, Espina C, Auvinen A, Kesminiene A, Schütz J (2015) European Code against cancer 4th edition: ultraviolet radiation and Cancer. Cancer Epidemiol 39(Suppl. 1):75–83.  https://doi.org/10.1016/j.canep.2014.12.014 CrossRefGoogle Scholar
  46. 46.
    Juzeniene A, Moan J (2014) Beneficial effects of UV radiation other than via vitamin D production. Dermatoendocrinol 4(2):109–117.  https://doi.org/10.4161/derm.20013 CrossRefGoogle Scholar
  47. 47.
    Liu T, Schroeder HJ, Barcelo L, Bragg SL, Terry MH, Wilson SM, Power GG, Blood AB (2014) Role of blood and vascular smooth muscle in the vasoactivity of nitrite. Am J Physiol Heart Circ Physiol 307(7):976–986.  https://doi.org/10.1152/ajpheart.00138.2014 CrossRefGoogle Scholar
  48. 48.
    Opländer C, Volkmar CM, Paunel-Görgülü A, van Faassen EE, Heiss C, Kelm M, Halmer D, Mürtz M, Pallua N, Suschek CV (2009) Whole body UVA irradiation lowers systemic blood pressure by release of nitric oxide from intracuaneous photolabile nitric oxide derivates. Circ Res 105(10):1031–1040.  https://doi.org/10.1161/CIRCRESAHA.109.207019 CrossRefPubMedGoogle Scholar
  49. 49.
    Autier P, Boniol M, Pizot C, Mullie P (2014) Vitamin D status and ill health. a systematic review. Lancet Diabetes Endocrinol 2(1):76–89.  https://doi.org/10.1016/S2213-8587(13)70165-7 CrossRefPubMedGoogle Scholar
  50. 50.
    Hartley M, Hoare S, Lithander FE, Neale RE, Hart PH, Gorman S, Gies P, Sherriff J, Swaminathan A, Beilin LJ, Mori TA, King L, Black LJ, Marshall K, Xiang F, Wyatt C, King K, Slevin T, Pandeya N, Lucas RM (2015) Comparing the effects of sun exposure and vitamin D supplementation on vitamin D insufficiency, and immune and cardio-metabolic function: the Sun Exposure and Vitamin D Supplementation (SEDS) study. BMC Public Health 15:115.  https://doi.org/10.1186/s12889-015-1461-7 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Agricultural and Nutritional SciencesMartin Luther University Halle-WittenbergHalle (Saale)Germany
  2. 2.Competence Cluster of Cardiovascular Health and Nutrition (nutriCARD)Halle-Jena-LeipzigGermany

Personalised recommendations