Skip to main content
Log in

Stress and biological aging

A double-edged sword

Stress und biologisches Altern

Ein zweischneidiges Schwert

  • Beiträge zum Themenschwerpunkt
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

It is well accepted that aging is the basis of most degenerative diseases in the elderly. Biological aging is characterized by a gradual accumulation of cellular and molecular defects. An important cause of defects is intense stress, such as oxidative or glycotoxic stress. Genes affecting cellular and organismal longevity are frequently associated with the regulation of cellular anti-oxidative defense and/or with repair functions. Damage, combined with an age-dependent decline in defense and repair systems, results in disturbed homeostasis, leading to aging and diseases. Whereas intense stress induces premature aging, mild stress can induce adaptive processes, stimulating the expression of genetic repair/defense systems, which positively influences life span.

Zusammenfassung

Altern ist die Grundlage und Voraussetzung für die meisten degenerativen Erkrankungen des älteren Patienten. Biologisches Altern ist durch die allmähliche Akkumulation von molekularen und zellulären Defekten charakterisiert. Eine wichtige Ursache dafür ist Stress, z. B. oxidativer oder glykotoxischer Stress. Gene, die Langlebigkeit beeinflussen, sind häufig mit der Regulation der zellulären antioxidativen Abwehr und/oder mit Reparatursystemen assoziiert. In Kombination mit dem altersabhängigen Nachlassen der Abwehr- und Reparatursysteme führen Schädigungen zu einer gestörten Homöostase und damit zu Alterung und Erkrankungen. Während intensiver Stress Alterungsprozesse beschleunigt, kann milder Stress adaptive Prozesse induzieren, etwa die Expression von Abwehr-/Genreparatursystemen, die sich letztendlich positiv auf die Lebensspanne auswirken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bae YS, Kang SW, Seo MS et al (1997) Epidermal growth factor (EGF)-induced generation of hydrogen peroxide. Role in EGF receptor-mediated tyrosine phosphorylation. J Biol Chem 272:217–221

    Article  CAS  PubMed  Google Scholar 

  2. Balaban RS, Nemoto S, Finkel T (2005) Mitochondria, oxidants, and aging. Cell 120:483–495

    Article  CAS  PubMed  Google Scholar 

  3. Bartholome A, Kampkötter A, Tanner S et al (2010) Epigallocatechin gallate-induced modulation of FoxO signaling in mammalian cells and C. elegans: FoxO stimulation is masked via PI3K/Akt activation by hydrogen peroxide formed in cell culture. Arch Biochem Biophys 501:58–64

    Article  CAS  PubMed  Google Scholar 

  4. Bjelakovic G, Nikolova D, Gluud C (2013) Meta-regression analyses, meta-analyses, and trial sequential analyses of the effects of supplementation with beta-carotene, vitamin A, and vitamin E singly or in different combinations on all-cause mortality: do we have evidence for lack of harm? PLoS One 8:e74558

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Cai W, He JC, Zhu L et al (2007) Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet: association with increased AGER1 expression. Am J Pathol 170:1893–1902

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cai W, He JC, Zhu L et al (2008) Oral glycotoxins determine the effects of calorie restriction on oxidant stress, age-related diseases, and lifespan. Am J Pathol 173:327–336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Calabrese EJ, Baldwin LA (2003) Hormesis: the dose-response revolution. Annu Rev Pharmacol Toxicol 43:175–197

    Article  CAS  PubMed  Google Scholar 

  8. Campisi J (2013) Aging, cellular senescence, and cancer. Annu Rev Physiol 75:685–705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Cannon W (1932) Wisdom of the Body. W.W. Norton & Company, United States

    Google Scholar 

  10. Cannon WB (1935) Stresses and strains of homeostasis. Am J Med Sci 189:1–14

    Article  Google Scholar 

  11. Cavigelli M, Li WW, Lin A et al (1996) The tumor promoter arsenite stimulates AP-1 activity by inhibiting a JNK phosphatase. EMBO J 15:6269–6279

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Chen K, Kirber MT, Xiao H et al (2008) Regulation of ROS signal transduction by NADPH oxidase 4 localization. J Cell Biol 181:1129–1139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Coluzzi E, Colamartino M, Cozzi R et al (2014) Oxidative stress induces persistent telomeric DNA damage responsible for nuclear morphology change in mammalian cells. PLoS One 9:e110963

    Article  PubMed Central  PubMed  Google Scholar 

  14. Derijard B, Hibi M, Wu IH et al (1994) JNK1: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 76:1025–1037

    Article  CAS  PubMed  Google Scholar 

  15. Deyulia GJ Jr, Carcamo JM (2005) EGF receptor-ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases. Biochem Biophys Res Commun 334:38–42

    Article  CAS  PubMed  Google Scholar 

  16. Epel ES, Blackburn EH, Lin J et al (2004) Accelerated telomere shortening in response to life stress. Proc Natl Acad Sci U S A 101:17312–17315

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ernst IM, Pallauf K, Bendall JK et al (2013) Vitamin E supplementation and lifespan in model organisms. Ageing Res Rev 12:365–375

    Article  CAS  PubMed  Google Scholar 

  18. Gomez-Cabrera MC, Domenech E, Romagnoli M et al (2008) Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr 87:142–149

    CAS  PubMed  Google Scholar 

  19. Guan JZ, Guan WP, Maeda T et al (2015) Patients with multiple sclerosis show increased oxidative stress markers and somatic telomere length shortening. Mol Cell Biochem 400:183–187

    Article  CAS  PubMed  Google Scholar 

  20. Han J, Lee JD, Bibbs L et al (1994) A MAP kinase targeted by endotoxin and hyperosmolarity in mammalian cells. Science 265:808–811

    Article  CAS  PubMed  Google Scholar 

  21. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11:298–300

    Article  CAS  PubMed  Google Scholar 

  22. Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205:531–546

    Article  CAS  PubMed  Google Scholar 

  23. Klotz LO, Briviba K, Sies H (1997) Singlet oxygen mediates the activation of JNK by UVA radiation in human skin fibroblasts. FEBS Lett 408:289–291

    Article  CAS  PubMed  Google Scholar 

  24. Klotz LO, Pellieux C, Briviba K et al (1999) Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA. Eur J Biochem 260:917–922

    Article  CAS  PubMed  Google Scholar 

  25. Knebel A, Rahmsdorf HJ, Ullrich A et al (1996) Dephosphorylation of receptor tyrosine kinases as target of regulation by radiation, oxidants or alkylating agents. EMBO J 15:5314–5325

    PubMed Central  CAS  PubMed  Google Scholar 

  26. Kops GJ, Dansen TB, Polderman PE et al (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419:316–321

    Article  CAS  PubMed  Google Scholar 

  27. Kyriakis JM, Avruch J (2012) Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 92:689–737

    Article  CAS  PubMed  Google Scholar 

  28. Leyendecker M, Korsten P, Reinehr R et al (2011) Ceruloplasmin expression in rat liver cells is attenuated by insulin: role of FoxO transcription factors. Horm Metab Res 43:268–274

    Article  CAS  PubMed  Google Scholar 

  29. Lindquist S (1980) Varying patterns of protein synthesis in Drosophila during heat shock: implications for regulation. Dev Biol 77:463–479

    Article  CAS  PubMed  Google Scholar 

  30. Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15:1957–1997

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lubsen NH, Sondermeijer PJ (1978) The products of the “heat-shock” loci of Drosophila hydei. Correlation between locus 2–36A and the 70,000 MW “heat-shock” peptide. Chromosoma 66:115–125

    Article  CAS  PubMed  Google Scholar 

  32. Mahadev K, Wu X, Zilbering A et al (2001) Hydrogen peroxide generated during cellular insulin stimulation is integral to activation of the distal insulin signaling cascade in 3T3-L1 adipocytes. J Biol Chem 276:48662–48669

    Article  CAS  PubMed  Google Scholar 

  33. Mahadev K, Zilbering A, Zhu L et al (2001) Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1b in vivo and enhances the early insulin action cascade. J Biol Chem 276:21938–21942

    Article  CAS  PubMed  Google Scholar 

  34. Marinho HS, Real C, Cyrne L et al (2014) Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2:535–562

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. McClung JP, Roneker CA, Mu W et al (2004) Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci U S A 101:8852–8857

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Meng TC, Buckley DA, Galic S et al (2004) Regulation of insulin signaling through reversible oxidation of the protein-tyrosine phosphatases TC45 and PTP1B. J Biol Chem 279:37716–37725

    Article  CAS  PubMed  Google Scholar 

  37. Nemoto S, Finkel T (2002) Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science 295:2450–2452

    Article  CAS  PubMed  Google Scholar 

  38. Niture SK, Khatri R, Jaiswal AK (2014) Regulation of Nrf2-an update. Free Radic Biol Med 66:36–44

    Article  CAS  PubMed  Google Scholar 

  39. Östman A, Frijhoff J, Sandin A et al (2011) Regulation of protein tyrosine phosphatases by reversible oxidation. J Biochem 150:345–356

    Article  PubMed  Google Scholar 

  40. Ott C, Jacobs K, Haucke E et al (2014) Role of advanced glycation end products in cellular signaling. Redox Biol 2:411–429

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pallauf K, Bendall JK, Scheiermann C et al (2013) Vitamin C and lifespan in model organisms. Food Chem Toxicol 58:255–263

    Article  CAS  PubMed  Google Scholar 

  42. Pinto A, Speckmann B, Heisler M et al (2011) Delaying of insulin signal transduction in skeletal muscle cells by selenium compounds. J Inorg Biochem 105:812–820

    Article  CAS  PubMed  Google Scholar 

  43. Puterman E, Epel E (2012) An intricate dance: life experience, multisystem resiliency, and rate of telomere decline throughout the lifespan. Soc Personal Psychol Compass 6:807–825

    Article  PubMed Central  PubMed  Google Scholar 

  44. Ristow M, Zarse K, Oberbach A et al (2009) Antioxidants prevent health-promoting effects of physical exercise in humans. Proc Natl Acad Sci U S A 106:8665–8670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Sachsenmaier C, Radler-Pohl A, Zinck R et al (1994) Involvement of growth factor receptors in the mammalian UVC response. Cell 78:963–972

    Article  CAS  PubMed  Google Scholar 

  46. Satoh T, Mckercher SR, Lipton SA (2013) Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs. Free Radic Biol Med 65:645–657

    Article  CAS  PubMed  Google Scholar 

  47. Schieke SM, von Montfort C, Buchczyk DP et al (2004) Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides. Free Radic Res 38:729–737

    Article  CAS  PubMed  Google Scholar 

  48. Serrano M, Lin AW, Mccurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  CAS  PubMed  Google Scholar 

  49. Sidhu A, Miller PJ, Hollenbach AD (2011) FOXO1 stimulates ceruloplasmin promoter activity in human hepatoma cells treated with IL-6. Biochem Biophys Res Commun 404:963–967

    Article  CAS  PubMed  Google Scholar 

  50. Simm A, Nass N, Bartling B et al (2008) Potential biomarkers of ageing. Biol Chem 389:257–265

    Article  CAS  PubMed  Google Scholar 

  51. Speckmann B, Walter PL, Alili L et al (2008) Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology 48:1998–2006

    Article  CAS  PubMed  Google Scholar 

  52. Stark M (2008) Hormesis, adaptation, and the sandpile model. Crit Rev Toxicol 38:641–644

    Article  CAS  PubMed  Google Scholar 

  53. Sundaresan M, Yu ZX, Ferrans VJ et al (1995) Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science 270:296–299

    Article  CAS  PubMed  Google Scholar 

  54. Von Montfort C, Sharov VS, Metzger S et al (2006) Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine. Biol Chem 387:1399–1404

    Google Scholar 

  55. Walter PL, Steinbrenner H, Barthel A et al (2008) Stimulation of selenoprotein P promoter activity in hepatoma cells by FoxO1a transcription factor. Biochem Biophys Res Commun 365:316–321

    Article  CAS  PubMed  Google Scholar 

  56. Zhu J, Woods D, Mcmahon M et al (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zorov DB, Plotnikov EY, Jankauskas SS et al (2012) The phenoptosis problem: what is causing the death of an organism? Lessons from acute kidney injury. Biochemistry (Mosc) 77:742–753

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Simm Ph.D..

Ethics declarations

Conflict of interest

A. Simm and L.-O. Klotz declare there are no conflicts of interest.

This article does not involve studies on humans or animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simm, A., Klotz, LO. Stress and biological aging. Z Gerontol Geriat 48, 505–510 (2015). https://doi.org/10.1007/s00391-015-0928-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-015-0928-6

Keywords

Schlüsselwörter

Navigation