Skip to main content
Log in

Mutations of mitochondrial DNA – cause or consequence of the ageing process?

Mutationen der mitochondrialen DNA – Grund oder Folge des Alterungsprozesses

  • CONTRIBUTION TO THE MAIN TOPIC
  • Published:
Zeitschrift für Gerontologie und Geriatrie Aims and scope Submit manuscript

Abstract

Ageing is a stochastic process which leads to a gradual decline in cellular, tissue and even organ function, especially in energy dependent postmitotic tissues like skeletal muscle, brain and heart. The mitochondrial theory of ageing is based on the assumption that reactive oxygen species (ROS) and free radicals generated in the immediate vicinity of the electron transport chain during the lifespan of an organism damage proteins, lipids and mitochondrial DNA (mtDNA). Whereas it was generally believed that mitochondria are among the important players regarding the ageing process, two recent important approaches shed new light on the complex interactions. It has been shown by single cell experiments and computer simulation models that mitochondrial mutations are generated stochastically in childhood or early adolescence and accumulate clonally in a cell or muscle fibre, leading to a local age related impairment of cellular energy supply. Other important observations come from mitochondrial mutator mice, harbouring mitochondrial mutations due to a deficient repair enzyme (POLG). These mice reveal a premature senescence but do not exhibit a vicious cycle of increased oxidative damage or ROS production as has been postulated by the mitochondrial theory of ageing. At the moment it is hard to decide, if mitochondrial mutations are the cause or consequence of human ageing, but it is suggested that mitochondrial point mutations are just the consequence, while deletions seem to play a causal role.

Zusammenfassung

Der Alterungsprozess führt zu einer durch zufällige Ereignisse beeinflussten steten Abnahme der Zell-, Gewebe und Organfunktion und betrifft besonders energieabhängige postmitotische Gewebe wie Skelettmuskel, Gehirn und Herz. Die mitochondriale Alterungstheorie fußt auf der Annahme, das reaktive Sauerstoffverbindungen und freie Radikale, die in der unmittelbaren Umgebung der Atmungskette während des Lebens eines Organismus in den Mitochondrien gebildet werden, Proteine, Lipide und die mitochondriale DNA (mtDNA) schädigen. Während man lange glaubte, dass den Mitochondrien eine entscheidende Bedeutung im Alterungsprozess zukommt, haben zwei neuere experimentelle Ansätze neues Licht in das Dunkel gebracht. Durch Einzelzellexperimente und mathematische Modelle konnte gezeigt werden, dass mitochondriale Mutationen zufällig bereits im Kindesalter oder bei Heranwachsenden entstehen, klonal in einer Zelle oder Muskelfaser vermehrt werden und zu einer altersabhängigen Beeinträchtigung der lokalen zellulären Energieversorgung führen. Weitere wichtigeBeobachtungen erfolgten bei so genannten Mutator-Mäusen, bei denen mitochondriale Mutationen viel häufiger auftreten, da ein Reperaturenzym (POLG) defekt ist. Während diese Mäuse zwar das Bild einer deutlichen Voralterung zeigen, findet sich kein erhöhter oxidativer Stress oder eine verstärkte ROS-Produktion wie nach der mitochondrialen Alterungstheorie zu erwarten wäre. Momentan lässt sich noch nicht entscheiden, ob die mitochondrialen DNA-Mutationen Grund oder Folge des menschlichen Alterungsprozesses sind, aber es scheint so zu sein, dass Punktmutationen nur die Folge sind, während Deletionen eher eine kausale Rolle zukommt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballard JW, Dean MD (2001) The mitochondrial genome: mutation, selection and recombination. Curr Opin Genet Dev 11:667–672

    Article  PubMed  CAS  Google Scholar 

  2. Bank C, Soulimane T, Schröder M, Buse G, Zassen S (2000) Multiple deletions of mtDNA remove the light strand origin of replication. Biochem Biophys Res Commun 279:595–601

    Article  PubMed  CAS  Google Scholar 

  3. Barja G (2000) The flux of free radical attack through mitochondrial DNA is related to aging rate. Aging Clin Exp Res 12:342–355

    CAS  Google Scholar 

  4. Bender A, Krishnan KJ, Morris CM, Taylor GA, Reeve AK, Perry RH, Jaros E, Hersheson JS, Betts J, Kloppstock T, Taylor RW, Turnbull DM (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517

    Article  PubMed  CAS  Google Scholar 

  5. Berdanier CD, Everts HB (2001) Mitochondrial DNA in aging and degenerative disease. Mutat Res 475:169–183

    PubMed  CAS  Google Scholar 

  6. Bodyak ND, Nekhaeva E, Wei JY, Khrapko K (2001) Quantification and sequencing of somatic deleted mtDNA in single cells: evidence for partially duplicated mtDNA in aged human tissues. Hum Mol Genet 10:17–24

    Article  PubMed  CAS  Google Scholar 

  7. Bowmaker M, Yang MY, Yasukawa T, Reyes A, Jakobs HT, Huberman JA, Holt IJ (2003) Mammalian mitochondrial DNA replicates bidirectionally from an initiation zone. J Biol Chem 278:50961–50969

    Article  PubMed  CAS  Google Scholar 

  8. Bua EA, Johnson J, Herbst A, Delong B, McKenzie D, Salamat S, Aiken JM (2006) Mitochondrial DNA-deletion mutations accumulate intracellularly to detrimental levels in aged human skeletal muscle fibers. Am J Hum Genet 79:469–480

    Article  PubMed  CAS  Google Scholar 

  9. Cassano P, Lezza Am, Leeuwenburg C, Canatore P, Gadaletta MN (2004) Measurement of the 4,834-bp mitochondrial DNA deletion level in aging rat liver and brain subjected or not to caloric restriction diet. Ann NY Acad Sci 1019:269–273

    Article  PubMed  CAS  Google Scholar 

  10. Chabi B, de Camaret BM, Chevrollier A, Boisgard S, Stepien G (2005) Random mtDNA deletions and functional consequence in aged human skeletal muscle. Biochem Biophys Res Commun 332:542–549

    Article  PubMed  CAS  Google Scholar 

  11. Corral-Debrinski M, Horton T, Lott MT, Shoffner JM, Beals MF, Wallace DC (1992) Mitochondrial DNA deletions in human brain: regional variability and increase with advanced age. Nat Genet 2:324–329

    Article  PubMed  CAS  Google Scholar 

  12. Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992) A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci USA 89:7370–7374

    Article  PubMed  CAS  Google Scholar 

  13. Elson JL, Samuels DC, Turnbull DM, Chinnery PF (2001) Random intracellular drift explains the clonal expansion of mitochondrial DNA mutations with age. Am J Hum Genet 68:802–806

    Article  PubMed  CAS  Google Scholar 

  14. Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19:351–369

    Article  PubMed  CAS  Google Scholar 

  15. Gokey NG, Cao Z, Pak JW, Lee D, McKiernan SH, McKenzie D, Weindruch R, Aiken JM (2004) Molecular analyses of mtDNA deletion mutations in microdissected skeletal muscle fibers from aged rhesus monkeys. Aging Cell 3:319–326

    Article  PubMed  CAS  Google Scholar 

  16. Graeber MB, Grasbon-Frodl E, Eitzen UV, Kösel S (1998) Neurodegeneration and aging: role of the second genome. J Neurosci Res 52:1–6

    Article  PubMed  CAS  Google Scholar 

  17. Harman D (1972) The biologic clock. The mitochondria? J Am Geriatr Soc 20:145–147

    PubMed  CAS  Google Scholar 

  18. Hasty P (2005) The impact of DNA damage, genetic mutation and cellular responses on cancer prevention, longevity and aging: observations in humans and mice. Mech Ageing Dev 126:71–77

    Article  PubMed  CAS  Google Scholar 

  19. Hayakawa M, Katsumata K, Yoneda M, Tanaka M, Sugiyama S, Ozawa T (1996) Age-related extensive fragmentation of mitochondrial DNA into minicircles. Biochem Biophys Res Commun 226:369–377

    Article  PubMed  CAS  Google Scholar 

  20. Jacobs HT (2003) The mitochondrial theory of aging: dead or alive? Aging Cell 2:11–17

    Article  PubMed  CAS  Google Scholar 

  21. Kadenbach B, Münscher C, Frank V, Müller-Höcker J, Napiwotzki J (1995) Human aging is associated with stochastic somatic mutations of mitochondrial DNA. Mutat Res 338:161–172

    PubMed  CAS  Google Scholar 

  22. Kajander OA, Rovio AT, Majamaa K, Poulton J, Spelbrink JN, Holt IJ, Karhunen PJ, Jacobs HT (2000) Human mtDNA sublimons resemble rearranged mitochondrial genoms found in pathological states. Hum Mol Genet 9:2821–2835

    Article  PubMed  CAS  Google Scholar 

  23. Keutzer DA, Essigmann JM (1998) Oxidized, deaminated cytosines are a source of C→T transitions in vivo. Proc Natl Acad Sci USA 95:3578–3582

    Article  Google Scholar 

  24. Khrapko K, Kraytsberg Y, de Grey AD, Vijg J, Schon EA (2006) Does premature aging of the mtDNA mutator mouse prove that mtDNA mutations are involved in natural aging? Aging Cell 5:279–282

    Article  PubMed  CAS  Google Scholar 

  25. Khrapko K, Nekhaeva E, Kratysberg Y, Kunz W (2003) Clonal expansions of mitochondrial genomes: implications for in vivo mutational spectra. Mutat Res 522:13–19

    PubMed  CAS  Google Scholar 

  26. Khrapko K, Vijg J (2007) Mitochondrial DNA mutations and aging: a case closed? Nat Genet 39:445–446

    Article  PubMed  CAS  Google Scholar 

  27. Korr H, Kurz C, Seidler TO, Sommer D, Schmitz C (1998) Mitochondrial DNA synthesis studied autoradiographically in various cell types in vivo. Braz J Med Biol Res 32:289–298

    Google Scholar 

  28. Kovalenko SA, Kopsidas G, Kelso JM, Linnane AW (1997) Deltoid human muscle mtDNA is extensively rearranged in old age subjects. Biochem Biophys Res Comm 232:147–152

    Article  PubMed  CAS  Google Scholar 

  29. Kowald A (1999) The mitochondrial theory of aging: do damaged mitochondria accumulate by delayed degradation? Exp Gerontol 34:605–612

    Article  PubMed  CAS  Google Scholar 

  30. Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520

    Article  PubMed  CAS  Google Scholar 

  31. Kujoth GC, Bradshaw, PC, Haroon S, Prolla TA (2007) The role of mitochondrial DNA mutations in mammalian aging. PLoS Genet 3:e24

    Article  PubMed  CAS  Google Scholar 

  32. Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wohlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R, Leeuwenburgh C, Prolla TA (2005) Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science 309:481–484

    Article  PubMed  CAS  Google Scholar 

  33. Lezza AM, Mecocci P, Cormio A, Beal MF, Cherubini A, Cantatore P, Senin U, Gadaleta MN (1999) Mitochondrial DNA 4977 bp deletion and OH8dG levels correlate in the brain of aged subjects but not Alzheimer's disease patients. FASEB J 13:1083–1088

    PubMed  CAS  Google Scholar 

  34. Mandavilli BS, Santos JH, van Houten B (2002) Mitochondrial DNA repair and aging. Mutat Res 509:127–151

    PubMed  CAS  Google Scholar 

  35. Meissner C, Bruse P, Oehmichen M (2006) Tissue-specific deletion patterns of the mitochondrial genome with advancing age. Exp Gerontol 41:508–524

    Article  PubMed  CAS  Google Scholar 

  36. Melov S, Coskun P, Patel M, Tuinstra R, Cottrell B, Jun AS, Zastawny TH, Dizdaroglu M, Goodman SI, Huang TT, Miziorko H, Epstein CJ, Wallace DC (1999) Mitochondrial disease in superoxide dismutase 2 mutant mice. Proc Natl Acad Sci USA 96:846–851

    Article  PubMed  CAS  Google Scholar 

  37. Melov S, Shoffner JM, Kaufman A, Wallace DC (1995) Marked increase in the number and variety of mitochondrial DNA rearrangements in aging human skeletal muscle. Nucleic Acids Res 23:4122–4126

    Article  PubMed  CAS  Google Scholar 

  38. Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980) Mitochondrial role in cell aging. Exp Gerontol 15:575–591

    Article  PubMed  CAS  Google Scholar 

  39. Mo JQ, Hom DG, Andersen JK (1995) Decreases in protective enzymes correlates with increased oxidative damage in the aging mouse brain. Mech Ageing Dev 81:73–82

    Article  PubMed  CAS  Google Scholar 

  40. Passos J, Saretzki G, Ahmed A, Nelson G, Richter T, Peters H, Wappler I, Birket M, Harold G, Schaeuble K, Birch-Machin MA, Kirkwood TBL, von Zglinicki T (2007) Mitochondrial dysfunction accounts for the stochastic heterogeneity in telomere-dependent senescence. PLoS Biology 5:e110

    Article  PubMed  CAS  Google Scholar 

  41. Phadnis N, Sia RA, Sia EA (2005) Analysis of repeat-mediated deletions in the mitochondrial genome of Saccharomyces cerevisiae. Genetics 171:1549–1559

    Article  PubMed  CAS  Google Scholar 

  42. Raha S, Robinson BH (2000) Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25:502–508

    Article  PubMed  CAS  Google Scholar 

  43. Rasmussen UF, Krustrup P, Kjaer M, Rasmussen HN (2003) Experimental evidence against the mitochondrial theory of aging. A study of isolated human skeletal muscle mitochondria. Exp Gerontol 38:877–886

    Article  PubMed  CAS  Google Scholar 

  44. Sato A, Tomohiro K, Nakada K, Ishikawa K, Inoue S, Yonekawa H, Hayashi J (2005) Gene therapy for progeny of mito-mice carrying pathogenic mtDNA by nuclear transplantation. Proc Natl Acad Sci USA 102:16765–16770

    Article  PubMed  CAS  Google Scholar 

  45. Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005) Extension of murine life span by overexpression of catalase targeted to mitochondria. Science 308:1909–1911

    Article  PubMed  CAS  Google Scholar 

  46. Shigenaga MK, Hagen TM, Ames BN (1994) Oxidative damage and mitochondrial decay in aging. Proc Natl Acad Sci USA 91:10771–10778

    Article  PubMed  CAS  Google Scholar 

  47. Simonetti S, Chen X, DiMauro S, Schon EA (1992) Accumulation of deletions in human mitochondrial DNA during normal aging: analysis by quantitative PCR. Biochim Biophys Acta 1180:113–122

    PubMed  CAS  Google Scholar 

  48. Soong NW, Hinton DR, Cortopassi G, Arnheim N (1992) Mosaicism for a speicific somatic mitochondrial DNA mutation in adult human brain. Nat Get 2:318–323

    Article  CAS  Google Scholar 

  49. Srivastava S, Moraes CT (2005) Double- strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humans. Hum Mol Genet 14:893–902

    Article  PubMed  CAS  Google Scholar 

  50. Storm T, Rath S, Mohamed SA, Bruse P, Kowald A, Oehmichen M, Meissner C (2002) Mitotic brain cells are just as prone to mitochondrial deletions as neurons: a large-scale single-cell PCR study of the human caudate nucleus. Exp Gerontol 37:1387–1398

    Article  Google Scholar 

  51. St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790

    Article  PubMed  CAS  Google Scholar 

  52. Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139

    Article  PubMed  Google Scholar 

  53. Sun J, Tower J (1999) FLP recombinase-mediated induction of Cu/Znsuperoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19:216–228

    PubMed  CAS  Google Scholar 

  54. Taylor RW, Barron MJ, Borthwick GM, Gospel A, Chinnery PF, Samuels DC, Taylor GA, Plusa SM, Needham SJ, Kirkwood TB, Greaves LC, Turnbull DM (2003) Mitochondrial DNA mutations in human colonic crypt stem cells. J Clin Invest 112:1351–1360

    Article  PubMed  CAS  Google Scholar 

  55. Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jakobs HAT, Larsson NG (2005) Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production. Proc Natl Acad Sci USA 102:17993–17998

    Article  PubMed  CAS  Google Scholar 

  56. Vemulst M, Bielas JH, Kujoth GC, Ladiges WC, Rabinovitch PS, Prolla TA, Loeb LA (2007) Mitochondrial point mutations do not limit the natural lifespan of mice. Nat Genet 39:540–543

    Article  CAS  Google Scholar 

  57. Wiesner RJ, Zsurka G, Kunz WS (2006) Mitochondrial DNA damage and the aging process-facts and imaginations. Free Radic Res 40:1284–1294

    Article  PubMed  CAS  Google Scholar 

  58. Yen HC, Oberley TD, Vichitbandha S, Ho YS, St Clair DK (1996) The protective role of manganese superoxide dismutase against adriamycin-induced acute cardiac toxicity in transgenic mice. J Clin Invest 98:1253–1260

    Article  PubMed  CAS  Google Scholar 

  59. Yen TC, King KL, Lee HC, Yeh SH, Wei YH (1994) Age-dependent increase of mitochondrial DNA deletions together with lipid peroxides and superoxide dismutase in human liver mitochondria. Free Radic Biol Med 16:207–214

    Article  PubMed  CAS  Google Scholar 

  60. Zeviani M, Spinazzola A, Carelli V (2003) Nuclear genes in mitochondrial disorders. Curr Opin Gene Dev 13:262–270

    Article  CAS  Google Scholar 

  61. Zhang C, Liu VW, Addessi CL, Sheffield DA, Linnane AW, Nagley P (1998) Differential occurrence of mutations in mitochondrial DNA of human skeletal muscle during aging. Hum Mutat 11:360–371

    Article  PubMed  CAS  Google Scholar 

  62. Zhong W, Oberley LW, Oberley TD, Yan T, Domann FE, St Clair DK (1996) Inhibition of cell growth and sensitization to oxidative damage by overexpression of manganese superoxide dismutase in rat glioma cells. Cell Growth Differ 7:1175–1186

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Meissner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meissner, C. Mutations of mitochondrial DNA – cause or consequence of the ageing process?. Z Gerontol Geriat 40, 325–333 (2007). https://doi.org/10.1007/s00391-007-0481-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00391-007-0481-z

Key words

Schlüsselwörter

Navigation