Zusammenfassung
Im Frühjahr 2010 wurden erneut 2 Studien präsentiert, die keine Verbesserung der Sterblichkeit der Patienten mit akut-auf-chronischem Leberversagen zeigten, obwohl sie mit einem Leberunterstützungssystem behandelt wurden. Die Autoren dieses Beitrags schlagen als Ursache für die negativen Studienergebnisse eine unzureichende Entgiftungsfunktion der Verfahren vor. Am Beispiel der Marker Ammoniak und Bilirubin wird erläutert, welche Entgiftungsziele für eine erfolgreiche Therapie anzusetzen sind. Zusätzlich werden weitere notwendige Funktionen eines Leberunterstützungssystems definiert wie Elektrolytausgleich und Kontrolle des Wasser- und Säure-Basen-Haushaltes. Auf die besondere Bedeutung der Vermeidung von Nebenwirkungen wird hingewiesen, da hierdurch die positiven Ergebnisse der Therapie zunichte gemacht werden können. Weitere offene Fragen betreffen die Auswahl der Patienten, des Therapiebeginns oder die Frage einer intermittierenden vs. einer kontinuierlichen Therapie. In diesem Kontext wird auch der derzeitige Stellenwert bioartifizieller Leberunterstützungssysteme besprochen.
Abstract
In the spring of 2010, two clinical studies that showed no improvement in the mortality of patients suffering from acute-on-chronic liver failure by treatment with liver support systems were presented. The authors of the present article suggest that the reason for the negative results is the inadequate detoxification capacity of the procedures. With the example of the surrogate markers ammonia and bilirubin, the detoxification targets for successful therapy are illustrated. In addition, other necessary functions of liver support systems, including acid–base balance, electrolyte balance, and control of water balance, are defined. The importance of avoiding side effects is particularly stressed, since the positive effects of therapy can be overshadowed. Other open questions deal with the selection of patients, the start of therapy or the issue of intermittent versus continuous therapy. In this context, the current status of bioartificial liver support systems is discussed.
Literatur
Ahya SN, Jose Soler M, Levitsky J et al (2006) Acid-base and potassium disorders in liver disease. Semin Nephrol 26:466–470
Al-Chalabi A, Kreymann B, Langgartner J et al (2009) Möglichkeiten und Zukunftsperspektiven der Leberersatztherapie. Intensivmed Notfallmed 46:347–354
Al-Chalabi A, Matevossian E, Preissel AK et al (2010) 818 survival improvement in pigs with liver failure and superimposed sepsis by a new liver support system (Hepa Wash®). J Hepatol 52:S319
Al-Chalabi A, Matevossian E, Preissel AK et al (2010) 819 improvement of survival in a swine model of acute liver failure by a new liver support system (Hepa Wash®). J Hepatol 52:S319–S320
Arteh J, Narra S, Nair S (2010) Prevalence of vitamin D deficiency in chronic liver disease. Dig Dis Sci 55:2624–2628
Bañnares R, Nevens F, Larsen FS et al (2010) 1184 Extracorporeal liver support with the Molecular Adsorbent Recirculating System (MARS) in patients with acute-on-chronic liver failure (AOCLF). The RELIEF trial. J Hepatol 52:S459–S460
Bellomo R, Cass A, Cole L et al (2009) Intensity of continuous renal-replacement therapy in critically ill patients. N Engl J Med 361:1627–1638
Berk PD, Howe RB, Bloomer JR et al (1969) Studies of bilirubin kinetics in normal adults. J Clin Invest 48:2176–2190
Carpentier B, Gautier A, Legallais C (2009) Artificial and bioartificial liver devices: present and future. Gut 58:1690–1702
Charalabopoulos K, Peschos D, Zoganas L et al (2007) Alterations in arterial blood parameters in patients with liver cirrhosis and ascites. Int J Med Sci 4:94–97
Cholongitas E, Senzolo M, Patch D et al (2006) Risk factors, sequential organ failure assessment and model for end-stage liver disease scores for predicting short term mortality in cirrhotic patients admitted to intensive care unit. Aliment Pharmacol Ther 23:883–893
Cordoba J, Blei AT, Mujais S (1996) Determinants of ammonia clearance by hemodialysis. Artif Organs 20:800–803
Davenport A (2009) Can advances in hemodialysis machine technology prevent intradialytic hypotension? Semin Dial 22:231–236
Dellinger RP, Levy MM, Carlet JM et al (2008) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med 36:296–327
Fernandez-Mondejar E, Guerrero-Lopez F, Colmenero M (2007) How important is the measurement of extravascular lung water? Curr Opin Crit Care 13:79–83
Funk GC, Doberer D, Kneidinger N et al (2007) Acid-base disturbances in critically ill patients with cirrhosis. Liver Int 27:901–909
Geerse DA, Bindels AJ, Kuiper MA et al (2010) Treatment of hypophosphatemia in the intensive care unit: a review. Crit Care 14:R147
Hassanein TI, Tofteng F, Brown RS Jr et al (2007) Randomized controlled study of extracorporeal albumin dialysis for hepatic encephalopathy in advanced cirrhosis. Hepatology 46:1853–1862
Haussinger D (2004) Neural control of hepatic osmolytes and parenchymal cell hydration. Anat Rec 280:893–900
Haussinger D (2008) Osmosensing and osmosignaling in the liver. Wien Med Wochenschr 158:549–552
Iwata H, Ueda Y (2004) Pharmacokinetic considerations in development of a bioartificial liver. Clin Pharmacokinet 43:211–225
Jenq CC, Tsai MH, Tian YC et al (2010) Serum sodium predicts prognosis in critically ill cirrhotic patients. J Clin Gastroenterol 44:220–226
Jepsen P, Ott P, Andersen PK et al (2010) Clinical course of alcoholic liver cirrhosis: a Danish population-based cohort study. Hepatology 51:1675–1682
Jung A, Krisper P, Haditsch B et al (2006) Bilirubin kinetic modeling for quantification of extracorporeal liver support. Blood Purif 24:413–422
Liu JP, Gluud LL, Als-Nielsen B et al (2004) Artificial and bioartificial support systems for liver failure. Cochrane Database Syst Rev CD003628
Palevsky PM, Zhang JH, O’connor TZ et al (2008) Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med 359:7–20
Rifai K, Kribben A, Gerken G et al (2010) 6 Extracorporeal liver support by fractionated plasma separation and adsorption (Prometheus) in patients with acute-on-chronic liver failure (HELIOS Study): a prospective randomized controlled multicenter study. J Hepatol 52:S3
Roberts SE, Goldacre MJ, Yeates D (2005) Trends in mortality after hospital admission for liver cirrhosis in an English population from 1968 to 1999. Gut 54:1615–1621
Stravitz RT, Larsen FS (2009) Therapeutic hypothermia for acute liver failure. Crit Care Med 37:S258–S264
Umgelter A, Reindl W, Wagner KS et al (2008) Effects of plasma expansion with albumin and paracentesis on haemodynamics and kidney function in critically ill cirrhotic patients with tense ascites and hepatorenal syndrome: a prospective uncontrolled trial. Crit Care 12:R4
Vinsonneau C, Camus C, Combes A et al (2006) Continuous venovenous haemodiafiltration versus intermittent haemodialysis for acute renal failure in patients with multiple-organ dysfunction syndrome: a multicentre randomised trial. Lancet 368:379–385
Yunos NM, Bellomo R, Story D et al (2010) Bench-to-bedside review: chloride in critical illness. Crit Care 14:226
Interessenkonflikt
Der korrespondierende Autor weist auf folgende Beziehungen hin: Dr. Al-Chalabi ist bei der Firma Hepa Wash GmbH tätig. PD Dr. Kreymann ist der Geschäftsführer der Firma Hepa Wash GmbH. Die Firma Hepa Wash GmbH entwickelt seit 5 Jahren ein Leberunterstützungssystem.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Al-Chalabi, A., Kreymann, B. & Huber, W. Leberunterstützungstherapien 2010. Intensivmed 47, 576–581 (2010). https://doi.org/10.1007/s00390-010-0194-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00390-010-0194-1