Skip to main content
Log in

Die Überwachung der Leberfunktionen in der Intensivmedizin

Monitoring liver functions in the intensive care unit

  • TECHNIK UND METHODEN
  • Published:
Intensivmedizin und Notfallmedizin

Abstract

The relevance of liver dysfunction in the management of critically ill patients is increasingly being recognized. It has been found to affect mortality of patients with septic organ failure in several studies. The increasing prevalence of chronic liver disease among intensive care patients adds importance to the issue of monitoring the various aspects of liver function. An array of liver function tests as part of blood biochemistry testing has long been established. In the context of critical care and chronic liver disease, however, they must be interpreted cautiously. In addition, several dynamic tests of liver function have been developed. Relatively best explored are tests based on the hepatic elimination of indocyanine-green (ICG). Commercially available systems analyzing the plasma disappearance rate of ICG (ICG-PDR) are being marketed but these parameters also are difficult to interpret in the intensive care setting and especially in patients with chronic liver disease. ICG-PDR correlates with mortality in patients with septic organ dysfunction but studies investigating the outcome-oriented results of therapeutic interventions directed by these parameters have not been published. The possible relevance to intensive care management of several other dynamic tests of liver function, as well as interventional and ultrasonografic methods to address liver perfusion, are discussed in the article. As yet, there is no single method to monitor the various aspects of liver function and no method whose clinical value has been proved. Clinicians therefore have to mostly rely on clinical judgement aided by a reasonable selection among existing monitoring tools.

Zusammenfassung

Die Bedeutung von akuten Funktionsstörungen der Leber bei schwerstkranken Patienten findet zunehmende Beachtung. Ihr Einfluss auf die Mortalität wurde in mehreren Studien für Patienten mit septischem Organversagen nachgewiesen. Gleichzeitig stellt die zunehmende Prävalenz chronischer Leberschäden bei Intensivpatienten eine Herausforderung für die Überwachung der Leberfunktion dar. Neben den etablierten Parametern des Routinelabors, deren Bedeutung allerdings gerade bei zirrhotischen Patienten umsichtig zu interpretieren ist, sind es vor allem dynamische Funktionstests, denen das Interesse der Intensivmedizin gilt. Am besten etabliert sind Monitoringverfahren, die auf der hepatischen Elimination von Indozyaningrün (ICG) beruhen. Hierauf basieren auch kommerziell angebotene Systeme zur Beurteilung der ICG-Plasmaverschwinderate (ICGPDR). Die Bedeutung der hiermit ermittelten Daten ist jedoch äußerst zurückhaltend zu beurteilen. Während die ICG-PDR beim septischen Multiorganversgen eine Korrelation mit der Mortalität aufzuweisen scheint, liegen ergebnisbezogene Studien hierauf basierter therapeutischer Interventionen bislang nicht vor. Die mögliche Bedeutung weiterer dynamischer Leberfuntionstests und spezieller interventioneller und sonografischer Untersuchungen zur Beurteilung der Leberperfusion für das intensivmedizinische Management wird diskutiert. Da derzeit keine die vielfältigen Leistungen der Leber umfassende und in ihrer klinischen Relevanz gesicherte Methode des Leberfunktionsmonitorings existiert, wird der Kliniker vorerst auf eine umsichtige Anwendung unterschiedlicher Instrumente und deren Interpretation im klinischen Kontext angewiesen bleiben.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Oellerich M, Armstrong VW (2001) The MEGX test: a tool for the realtime assessment of hepatic function. Ther Drug Monit 23:81–92

    Article  PubMed  CAS  Google Scholar 

  2. Sakka SG (2007) Assessing liver function. Curr Opin Crit Care 13:207–214

    Article  PubMed  Google Scholar 

  3. Shaver WA, Bhatt H, Combes B (1986) Low serum alkaline phosphatase activity in Wilson’s disease. Hepatology 6:859–863

    Article  PubMed  CAS  Google Scholar 

  4. Hawker F (1991) Liver dysfunction in critical illness. Anaesth Intensive Care 19:165–181

    PubMed  CAS  Google Scholar 

  5. Berk PD, Wolkoff AW, Berlin NI (1975) Inborn errors of bilirubin metabolism. Med Clin North Am 59:803–816

    PubMed  CAS  Google Scholar 

  6. Ching N, Grossi CE, Angers J, Zurawinsky HS, Jham G, Mills CB, Nealon TF Jr (1980) The outcome of surgical treatment as related to the response of the serum albumin level to nutritional support. Surg Gynecol Obstet 151:199–202

    PubMed  CAS  Google Scholar 

  7. Bradley JA, Cunningham KJ, Jackson VJ, Hamilton DN, Ledingham IM (1981) Serum protein levels in critically ill surgical patients. Intensive Care Med 7:291–295

    Article  PubMed  CAS  Google Scholar 

  8. Apelgren KN, Rombeau JL, Twomey PL, Miller RA (1982) Comparison of nutritional indices and outcomes in critically ill patients. Crit Care Med 10:305–307

    Article  PubMed  CAS  Google Scholar 

  9. Golub R, Sorrento JJ Jr, Cantu R Jr, Nierman DM, Moideen A, Stein HD (1994) Efficacy of albumin supplementation in the surgical intensive care unit: a prospective, randomized study. Crit Care Med 22:613–619

    Article  PubMed  CAS  Google Scholar 

  10. Fleck A, Raines G, Hawker F, Trotter J, Wallace PI, Ledingham IM, Calman KC (1985) Increased vascular permeability: a major cause of hypoalbuminaemia in disease and injury. Lancet 325:781–784

    Article  Google Scholar 

  11. Tripodi A, Salerno F, Chantarangkul V, Clerici M, Cazzaniga M, Primignani M, Mannucci PM (2005) Evidence of normal thrombin generation in cirrhosis despite abnormal conventional coagulation tests. Hepatology 41:553–558

    Article  PubMed  CAS  Google Scholar 

  12. Montalto P, Vlachogiannakos J, Cox DJ, Pastacaldi S, Patch D, Burroughs AK (2002) Bacterial infection in cirrhosis impairs coagulation by a heparin effect: a prospective study. J Hepatol 37:463–470

    Article  PubMed  CAS  Google Scholar 

  13. Noris M, Remuzzi G (1999) Uremic bleeding: closing the circle after 30 years of controversies? Blood 94:2569–2574

    PubMed  CAS  Google Scholar 

  14. Laffi G, Marra F, Tarquini R, Abbate R (2006) Coagulation defects in cirrhosis- old dogmas not yet ready for burial. J Thromb Haemost 4:2068–2069

    Article  PubMed  CAS  Google Scholar 

  15. Clemmesen JO, Larsen FS, Kondrup J, Hansen BA, Ott P (1999) Cerebral herniation in patients with acute liver failure is correlated with arterial ammonia concentration. Hepatology 29:648–653

    Article  PubMed  CAS  Google Scholar 

  16. Ong JP, Aggarwal A, Krieger D, Easley KA, Karafa MT, Van Lente F, Arroliga AC, Mullen KD (2003) Correlation between ammonia levels and the severity of hepatic encephalopathy. Am J Med 114:188–193

    Article  PubMed  CAS  Google Scholar 

  17. Ott P (1998) Hepatic elimination of indocyanine green with special reference to distribution kinetics and the influence of plasma protein binding. Pharmacol Toxicol 83:1–48

    PubMed  Google Scholar 

  18. Bradley SE, Ingelfinger FJ, Bradley GP, Curry JJ (1945) The estimation of hepatic blood flow in man. J Clin Invest 24:890–897

    Article  PubMed  CAS  Google Scholar 

  19. Leevy CM, Mendenhall CL, Lesko W, Howard MM (1962) Estimation of hepatic blood flow with indocyanine green. J Clin Invest 41:1169–1179

    Article  PubMed  CAS  Google Scholar 

  20. Ott P, Bass L, Keiding S (1997) Hepatic ICG removal in the pig depends on plasma protein and hematocrit: evidence of sinusoidal binding disequilibrium and unstirred water layer effects. Hepatology 26:679–690

    Article  PubMed  CAS  Google Scholar 

  21. Lund M, Kang L, Tygstrup N, Wolkoff AW, Ott P (1999) Effects of LPS on transport of indocyanine green and alanine uptake in perfused rat liver. Am J Physiol 277:G91–100

    PubMed  CAS  Google Scholar 

  22. Chijiiwa K, Mizuta A, Ueda J, Takamatsu Y, Nakamura K, Watanabe M, Kuroki S, Tanaka M (2002) Relation of biliary bile acid output to hepatic adenosine triphosphate level and biliary indocyanine green excretion in humans. World J Surg 26:457–461

    Article  PubMed  Google Scholar 

  23. Beno DW, Uhing MR, Goto M, Chen Y, Jiyamapa-Serna VA, Kimura RE (2001) Endotoxin-induced reduction in biliary indocyanine green excretion rate in a chronically catheterized rat model. Am J Physiol Gastrointest Liver Physiol 280:G858–G865

    CAS  Google Scholar 

  24. Uusaro A, Ruokonen E, Takala J (1994) Estimation of splanchnic blood flow by the Fick principle in man and problems in the use of indocyanine green. Cardiovasc Res 30:106–112

    Google Scholar 

  25. Sakka SG, Koeck H, Meier-Hellmann A (2004) Measurement of indocyanine green plasma disappearance rate by two different dosages. Intensive Care Med 30:506–509

    Article  PubMed  Google Scholar 

  26. Sakka SG, van Hout N (2006) Relation between indocyanine green (ICG) plasma disappearance rate and ICG blood clearance in critically ill patients. Intensive Care Med 32:766–769

    Article  PubMed  CAS  Google Scholar 

  27. Sakka SG, Reinhart K, Meier-Hellmann A (2000) Comparison of invasive and noninvasive measurements of indocyanine green plasma disappearance rate in critically ill patients with mechanical ventilation and stable hemodynamics. Intensive Care Med 26:1553–1556

    Article  PubMed  CAS  Google Scholar 

  28. Faybik P, Krenn CG, Baker A, Lahner D, Berlakovich G, Steltzer H, Hetz H (2004) Comparison of invasive and noninvasive measurement of plasma disappearance rate of indocyanine green in patients undergoing liver transplantation: a prospective investigator- blinded study. Liver Transpl 10:1060–1064

    Article  PubMed  Google Scholar 

  29. Pollack DS, Sufian S, Matsumoto T (1979) Indocyanine green clearance in critically ill patients. Surg Gynecol Obstet 149:852–854

    PubMed  CAS  Google Scholar 

  30. Kholoussy AM, Pollack D, Matsumoto T (1984) Prognostic significance of indocyanine green clearance in critically ill surgical patients. Crit Care Med 12:115–116

    Article  PubMed  CAS  Google Scholar 

  31. Maynard ND, Bihari DJ, Dalton RN, Beale R, Smithies MN, Mason RC (1997) Liver function and splanchnic ischemia in critically ill patients. Chest 111:180–187

    Article  PubMed  CAS  Google Scholar 

  32. Sakka SG, Reinhart K, Meier-Hellmann A (2002) Prognostic value of the indocyanine green plasma disappearance rate in critically ill patients. Chest 122:1715–1720

    Article  PubMed  Google Scholar 

  33. Kimura S, Yoshioka T, Shibuya M, Sakano T, Tanaka R, Matsuyama S (2001) Indocyanine green elimination rate detects hepatocellular dysfunction early in septic shock and correlates with survival. Crit Care Med 29:1159–1163

    Article  PubMed  CAS  Google Scholar 

  34. Malbrain MLNG, Molnar Z (2006) Prognostic value of indocyanine green clearance in severe sepsis. Intensive Care Med 32:S8

    Google Scholar 

  35. Rank N, Michel C, Haertel C, Lenhart A, Welte M, Meier-Hellmann A, Spies C (2000) N-acetylcysteine increases liver blood flow and improves liver function in septic shock patients: results of a prospective, randomized, double-blind study. Crit Care Med 28:3799–3807

    Article  PubMed  CAS  Google Scholar 

  36. Devlin J, Ellis AE, McPeake J, Heaton N, Wendon JA, Williams R (1997) N-acetylcysteine improves indocyanine green extraction and oxygen transport during hepatic dysfunction. Crit Care Med 25:236–242

    Article  PubMed  CAS  Google Scholar 

  37. Smithies M, Yee TH, Jackson L, Beale R, Bihari D (1994) Protecting the gut and the liver in the critically ill: effects of dopexamine. Crit Care Med 22:789–795

    Article  PubMed  CAS  Google Scholar 

  38. Maynard ND, Bihari DJ, Dalton RN, Smithies MN, Mason RC (1995) Increasing splanchnic blood flow in the critically III. Chest 108:1648–1654

    Article  PubMed  CAS  Google Scholar 

  39. Birnbaum J, Lehmann C, Taymoorian K, Krausch D, Wauer H, Gründling M, Spies C, Kox WJ (2003) Einfluss von Dopexamin und Iloprost auf die Plasma-Disappearance-Rate von Indozyaningrün bei Patienten im septischen Schock. Anaesthesist 52:1014–1019

    Article  PubMed  CAS  Google Scholar 

  40. Meier-Hellmann A, Bredle DL, Specht M, Hannemann L, Reinhart K (1999) Dopexamine increases splanchnic blood flow but decreases gastric mucosal pH in severe septic patients treated with dobutamine. Crit Care Med

  41. Lehmann C, Taymoorian K, Wauer H, Krausch D, Birnbaum J, Kox WJ (2000) Effects of the stable prostacyclin analogue iloprost on the plasma disappearance rate of indocyanine green in human septic shock. Intensive Care Med 26:1557–1560

    Article  PubMed  CAS  Google Scholar 

  42. Scheingraber S, Richter S, Igna D, Girndt M, Flesch S, Kleinschmidt S, Schilling MK (2007) Indocyanine green elimination but not bilirubin indicates improvement of graft function during MARS therapy. Clin Transplant 21:689–695

    PubMed  Google Scholar 

  43. Tsubono T, Todo S, Jabbour N, Mizoe A, Warty V, Demetris AJ, Starzl TE (1996) Indocyanine green elimination test in orthotopic liver recipients. Hepatology 24:1165–1171

    Article  PubMed  CAS  Google Scholar 

  44. Plevris JN, Jalan R, Bzeizi KI, Dollinger MM, Lee A, Garden OJ, Hayes PC (1999) Indocyanine green clearance reflects reperfusion injury following liver transplantation and is an early predictor of graft function. J Hepatol 30:142–148

    Article  PubMed  CAS  Google Scholar 

  45. Daz S, Pérez-Peña J, Sanz J, Olmedilla L, Garutti I, Barrio JM (2003) Haemodynamic monitoring and liver function evaluation by pulsion cold system Z-201 (PCS) during orthotopic liver transplantation. Clin Transplant 17:47–55

    Article  Google Scholar 

  46. Oellerich M, Raude E, Burdelski M, Schulz M, Schmidt FW, Ringe B, Lamesch P, Pichlmayr R, Raith H, Scheruhn M et al (1987) Monoethylglycinexylidide formation kinetics: a novel approach to assessment of liver function. J Clin Chem Clin Biochem 25:845–853

    PubMed  CAS  Google Scholar 

  47. Orlando R, Piccoli P, De Martin S, Padrini R, Floreani M, Palatini P (2004) Cytochrome P450 1A2 is a major determinant of lidocaine metabolism in vivo: effects of liver function. Clin Pharmacol Ther 75:80–88

    Article  PubMed  CAS  Google Scholar 

  48. Schröter J, Wandel C, Böhrer H, Schmidt H, Böttiger BW, Martin E (1995) Lignocaine metabolite formation: an indicator for liver dysfunction and predictor of survival in surgical intensive care patients. Anaesthesia 50:850–854

    Article  PubMed  Google Scholar 

  49. Liu YT, Hao HP, Liu CX, Wang GJ, Xie HG (2007) Drugs as CYP3A probes, inducers, and inhibitors. Drug Metab Rev 39:699–721

    Article  PubMed  CAS  Google Scholar 

  50. Tortorici MA, Kochanek PM, Poloyac SM (2007) Effects of hypothermia on drug disposition, metabolism, and response: a focus of hypothermiamediated alterations on the cytochrome P450 enzyme system. Crit Care Med 35:2196–2204

    Article  PubMed  CAS  Google Scholar 

  51. McKindley DS, Boulet J, Sachdeva K, Wang P, Chichester C (2002) Endotoxic shock alters the pharmacokinetics of lidocaine and monoethylglycinexylidide. Shock 17:199–204

    Article  PubMed  Google Scholar 

  52. Jakob SM, Ruokonen E, Rosenberg PH, Takala J (2002) Effect of dopamine- induced changes in splanchnic blood flow on MEGX production from lidocaine in septic and cardiac surgery patients. Shock 18:1–7

    Article  PubMed  Google Scholar 

  53. Hepner GW, Vesell ES (1975) Quantitative assessment of hepatic function by breath analysis after oral administration of (14C)aminopyrine. Ann Intern Med 83:632–638

    PubMed  CAS  Google Scholar 

  54. Novotny AR, Emmanuel K, Maier S, Westerholt A, Weighardt H, Stadler J, Bartels H, Schwaiger M, Siewert JR, Holzmann B, Heidecke CD (2007) Cytochrome P450 activity mirrors nitric oxide levels in postoperative sepsis: predictive indicators of lethal outcome. Surgery 141:376–384

    Article  PubMed  Google Scholar 

  55. Tygstrup N (1964) The galactose elimination capacity in control subjects and in patients with cirrhosis of the liver. Acta Med Scand 175:281–289

    PubMed  CAS  Google Scholar 

  56. Tengström B (1969) The discriminatory ability of a galactose tolerance test and some other tests in the diagnosis of cirrhosis of the liver, hepatitis and biliary obstruction. Scand J Clin Lab Invest 23:159–168

    Article  PubMed  Google Scholar 

  57. Ranek L, Andreasen PB, Tygstrup N (1976) Galactose elimination capacity as a prognostic index in patients with fulminant liver failure. Gut 17:959–964

    Article  PubMed  CAS  Google Scholar 

  58. Schmidt LE, Ott P, Tygstrup N (2004) Galactose elimination capacity as a prognostic marker in patients with severe acetaminophen-induced hepatotoxicity: 10 years’ experience. Clin Gastroenterol Hepatol 2:418–424

    Article  PubMed  CAS  Google Scholar 

  59. Henrion J, Descamps O, Luwaert R, Schapira M, Parfonry A, Heller F (1994) Hypoxic hepatitis in patients with cardiac failure: incidence in a coronary care unit and measurement of hepatic blood flow. J Hepatol 21:696–703

    Article  PubMed  CAS  Google Scholar 

  60. Butler MA, Iwasaki M, Guengerich FP, Kadlubar FF (1989) Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3-demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc Natl Aca Sci USA 86:7696–7700

    Article  CAS  Google Scholar 

  61. Renner E, Wietholtz H, Huguenin P, Arnaud MJ, Preisig R (1984) Caffeine: a model compound for measuring liver function. Hepatology 4:38–46

    Article  PubMed  CAS  Google Scholar 

  62. Schaad HJ, Renner EL, Wietholtz H, Arnaud MJ, Preisig R (1995) Caffeine demethylation measured by breath analysis in experimental liver injury in the rat. J Hepatol 22:82–87

    Article  PubMed  CAS  Google Scholar 

  63. Tanaka E, Ishikawa A, Yamamoto Y, Osada A, Tsuji K, Fukao K, Misawa S, Iwasaki Y (1992) A simple useful method for the determination of hepatic function in patients with liver cirrhosis using caffeine and its three major dimethylmetabolites. Int J Clin Pharmacol Ther Toxicol 30:336–341

    PubMed  CAS  Google Scholar 

  64. Wirts CW, Bradford BK (1948) The biliary excretion od bromsulfalein as a test of liver function in a group of patients following hepatitis or serum jaundice. J Clin Invest 27:600–608

    Article  PubMed  CAS  Google Scholar 

  65. Yamanaka N, Shimizu S, Chijiiwa K, Nishiyama K, Noshiro H, Yamaguchi K, Tanaka M (2001) Hepatectomy and marked retention of indocyanine green and bromosulfophtalein. Hepatogastroenterology 48:1450–1452

    PubMed  CAS  Google Scholar 

  66. Conti F, Dousset B, Cherruau B, Guérin C, Soubrane O, Houssin D, Calmus Y (2004) Use of lidocaine metabolism to test liver function during the long-term follow-up of liver transplant recipients. Clin Transplant 18:235–241

    Article  PubMed  Google Scholar 

  67. Moitinho E, Escorsell A, Bandi JC, Salmerón JM, Garca-Pagán JC, Rodés J, Bosch J (1999) Prognostic value of early measurements of portal pressure in acute variceal bleeding. Gastroenterology, pp 626–631

  68. Monescillo A, Martínez-Lagares F, Ruiz-del-Arbol L, Sierra A, Guevara C, Jiménez E, Marrero JM, Buceta E, Sánchez J, Castellot A, Peñate M, Cruz A, Peña E (2004) Influence of portal hypertension and its early decompression by TIPS placement on the outcome of variceal bleeding. Hepatology 40:793–801

    PubMed  Google Scholar 

  69. Alpern MB, Rubin JM, Williams DM, Capek P (1987) Porta hepatis: duplex Doppler US with angiographic correlation. Radiology 162:53–56

    PubMed  CAS  Google Scholar 

  70. Hellinger A, Roll C, Stracke A, Erhard J, Eigler FW (1996) Impact of colour Doppler sonography on detection of thrombosis of the hepatic artery and the portal vein after liver transplantation. Langenbecks Arch Chir

  71. Martínez-Noguera A, Montserrat E, Torrubia S, Villalba J (2002) Doppler in hepatic cirrhosis and chronic hepatitis. Semin Ultrasound CT MR 23:19–36

    Article  PubMed  Google Scholar 

  72. Paulson EK, Kliewer MA, Frederick MG, Keogan MT, DeLong DM, Nelson RC (1997) Doppler US measurement of portal venous flow: variability in healthy fasting volunteers. Radiology 202:721–724

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Umgelter.

Additional information

Wenn’s da kein Problem haben, dann ham’s was übersehen. Ursula Schweigart

Serie:Neue Technologien in der IntensivmedizinHerausgegeben von J. Langgartner (Regensburg) und R.M. Schmid (München)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umgelter, A., Geisler, F. & Schulte-Frohlinde, E. Die Überwachung der Leberfunktionen in der Intensivmedizin. Intensivmed 45, 413–423 (2008). https://doi.org/10.1007/s00390-008-0895-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-008-0895-x

Key words

Schlüsselwörter

Navigation