Intensivmedizin und Notfallmedizin

, Volume 46, Issue 2, pp 101–108 | Cite as

Kammerflattern, Kammerflimmern und ventrikuläre Tachykardien

Strategien für die Notfall- und Intensivmedizin
Notfallmedizin

Zusammenfassung

Die Prognose von Patienten mit prähospitalem Herz-Kreislauf-Stillstand (pHKS) durch Kammerflimmern ist schlecht und nur 5–8% der Patienten überleben ein solches Ereignis. Die Defibrillation ist das entscheidende therapeutische Verfahren und sollte beim pHKS innerhalb von 5 Minuten erfolgen. Jede Minute, die vergeht, verschlechtert den Erfolg der Defibrillation um circa 10%. „Frühdefibrillation“ wird als Intervention mittels automatisierter externer Defibrillatoren (AED) durch nicht ärztliche Rettungskräfte verstanden, wobei zwischen der „First Responder“ Defibrillation (trainierte Laienhelfer) und der „Public Access“ Defibrillation (zufällig in der Nähe von AED anwesende untrainierte Laien) unterschieden wird. In den meisten bisher vorliegenden Studien aus USA und Europa wurde nachgewiesen, dass die AED-Anwendung durch trainierte Ersthelfer zu höheren Überlebensraten führte als beim Einsatz professioneller Helfer („NAW-Team“). Dieses wurde damit begründet, dass die „call-to-arrival-time“ bei Ersthelfern wesentlich kürzer war als bei den professionellen Rettungssystemen. Zum jetzigen Zeitpunkt sollten AEDs an Plätzen installiert werden, an denen sich viele Menschen aufhalten. Auch in Kliniken sind die Reanimationsergebnisse schlecht und die Überlebensrsate liegt bei lediglich 30%. Auch in medizinischen Institutionen sollte eine Defibrillation so schnell möglich erfolgen, um die schlechten Reanimationsergebnisse zu verbessern.

Schlüsselwörter

Herz-Kreislauf-Stillstand Reanimation Frühdefibrillation Automatisierter externer Defibrillator 

Ventricular flutter, ventricular fibrillation and ventricular tachycardia–

Strategies for emergency and critical care medicine

Abstract

Sudden out-of-hospital cardiac arrest is a leading cause of death in the western world and only 5–8% of patients survive such an event. Defibrillation is the most effective treatment and should be performed within 5 minutes; however, its effectiveness diminishes by about 10% with each passing minute. “Early defibrillation” is the use of automated external defibrillators (AEDs) by trained public-safety personal (“first responder”), whereas “public access” defibrillation describes AED use by people who have no specific AED training. Several studies in the US and in Europe show that first responder defibrillation will increase the number of survivors of out-of-hospital cardiac arrest compared to paramedics. This is caused by a shorter “call-to-arrival time” for first responders compared to paramedics. In Europe, automated external defibrillators have only rarely been installed in locations frequented by large numbers of people. Reasons for this are the lack of open-mindedness, as well as logistic and legal problems. Unfortunately, there is also a poor success rate of resuscitation in hospitals with survival rates of about 30%. Therefore, placement of automated external defibrillators in public places frequented by large numbers of susceptible people and in hospitals will increase overall survival.

Keywords

Cardiac arrest Resuscitation Early defibrillation Automated external defibrillator 

Literatur

  1. 1.
    Abella BS, Alvarado JP, Myklebust H et al (2005) Quality of cardiopulmonary resuscitation during in-hospital cardiac arrest. JAMA 293:305–310PubMedCrossRefGoogle Scholar
  2. 2.
    Bain AC, Swerdlow CD, Love CJ et al (2001) Multicenter study of principles-based waveforms for external defibrillation. Ann Emerg Med 37:5–12PubMedCrossRefGoogle Scholar
  3. 3.
    Beck CS, Pritchard WH, Feil HS (1947) Ventricular fibrillation of long duration abolished by electric shock. J Am Med Assoc 135:985–986Google Scholar
  4. 4.
    Becker L, Eisenberg M, Fahrenbruch C, Cobb L (1998) Public locations of cardiac arrest. Implication for public access defibrillation. Circulation 97:2106–2109PubMedGoogle Scholar
  5. 5.
    Blanchard SM, Knisley SB, Walcott GP, Ideker RE (1994) Defibrillation waveforms. In: Singer I (Hrsg) Implantable cardioverter defibrillator. Futura Publishing Company, New York, S 153–178Google Scholar
  6. 6.
    Bunch TJ, White RD, Gersh BJ et al (2004) Long-term outcomes of out-of-hospital cardiac arrest after successful early defibrillation. N Engl J Med 348:2626–2633CrossRefGoogle Scholar
  7. 7.
    Caffrey SL, Willoughby PJ, Pepe PE, Becker LB (2002) Public use of automated external defibrillators. N Engl J Med 347:1242–1247PubMedCrossRefGoogle Scholar
  8. 8.
    Capucci A, Aschieri D, Piepoli MF et al (2002) Tripling survival from sudden cardiac arrest via early defibrillation without traditional education in cardiopulmonary resuscitation. Circulation 106:1065–1070PubMedCrossRefGoogle Scholar
  9. 9.
    Chan PS, Krumholz HM, Nichol G et al (2008) and the American Heart Association National Registry of Cardiopulmonary Resuscitation Investigators Delayed time to defibrillation after in-hospital cardiac arrest. N Engl J Med 358:9–17PubMedCrossRefGoogle Scholar
  10. 10.
    Cohn AC, Wilson WM, Yan B et al (2004) Analysis of clinical outcomes following in-hospital adult cardiac arrest. Intern Med J 34:398–402PubMedCrossRefGoogle Scholar
  11. 11.
    Eisenberg MS, Mengert TJ (2001) Cardiac resuscitation. N Engl J Med 344:1304–1313PubMedCrossRefGoogle Scholar
  12. 12.
    Foitik G, Hoerauf K (2003) Austrias nationwide public access defibrillation program: one year experience. Conference abstract of ERC Symposium on Early Defibrillation. 28–29 November 2003Google Scholar
  13. 13.
    Gliner BE, Jorgenson DB, Poole JE (1998) Treatment of out-of-hospital cardiac arrest with a low-energy impedance-compensating biphasic waveform automatic external defibrillator. IEEE Biomed Intrum Technol 32:631–644Google Scholar
  14. 14.
    Herff H, Danninger T, Wenzel V, Lindner KH (2007) Kardiopulmonale Reanimation. In: Burchardi H, Larsen R, Kuhlen R (Hrsg) Die Intensivmedizin. 10., überarbeitete und erweiterte Aufl. Springer-Verlag, Berlin Heidelberg New York, 374–383Google Scholar
  15. 15.
    International Liasion Committee On Resuscitation, ILCOR (2005) 2005 International Consensus Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science with Treatment Recommendations. Resuscitation 67:157–337CrossRefGoogle Scholar
  16. 16.
    Maio VJ, Stiell IG, Wells GA (2001) Potential impact of public access defibrillation based upon cardiac arrest locations. Acad Emerg Med 8:415–416Google Scholar
  17. 17.
    Mosesso VN, Davis EA, Auble TE et al (1998) Use of automated external defibrillators by police officers for treatment of out-of-hospital cardiac arrest. Ann Emerg Med 32:200–207PubMedCrossRefGoogle Scholar
  18. 18.
    Müller-Nordhorn J, Arntz HR, Löwel H, Willich SN (2001) Epidemiologie des plötzlichen Herztodes. Intensivmed 38:499–507CrossRefGoogle Scholar
  19. 19.
    Myerburg RJ, Fenster J, Velez M et al (2002) Impact of community-wide police car deployment of automated external defibrillators on survival from out-of-hospital cardiac arrest. Circulation 106:1058–1064PubMedCrossRefGoogle Scholar
  20. 20.
    O’Rourke MF, Donaldson E, Geddes JS (1997) An airline cardiac arrest program. Circulation 96:2849–2853PubMedGoogle Scholar
  21. 21.
    Page RL, Joglar JA, Kowal RC et al (2000) Use of automated external defibrillators by a U.S. airline. N Engl J Med 343:1210–1216PubMedCrossRefGoogle Scholar
  22. 22.
    Peduzzi F Jost, LePogann A, Degrange H, Rüttimann M (2003) Interest of automated external defibrillations implemented in public areas receiving crowd in an urban area. Conference abstract of ERC Symposium on Early Defibrillation, 28.–29 November 2003Google Scholar
  23. 23.
    Pell JP, Sirel JM, Marsden AK et al (2002) Potential impact of public access defibrillators on survival after out of hospital cardiopulmonary arrest: retrospective cohort study. BMJ 325:1–5CrossRefGoogle Scholar
  24. 24.
    Priori SG, Bossaert LL, Chamberlain DA et al (2004) ESC-ERC recommendations for the use of automated external defibrillators (AEDs) in Europe. Eur Heart J 25:437–445PubMedCrossRefGoogle Scholar
  25. 25.
    Sandroni C, Ferro G, Santangelo S et al (2004) In-hospital cardiac arrest: survival depends mainly on the effectiveness of the emergency response. Resuscitation 62:291–297PubMedCrossRefGoogle Scholar
  26. 26.
    Schneider T, Martens PR, Paschen H et al (2000) Multicenter, randomized, controlled trial of 150-J biphasic compared with 200- to 360-J monophasic shocks in the resuscitation of out-of-hospital cardiac arrest victims. Circulation 102:1780–1787PubMedGoogle Scholar
  27. 27.
    Sefrin P (2004) Frühdefibrillation in Europa. Intensivmed 41:609–615CrossRefGoogle Scholar
  28. 28.
    Stiell IG, Wells GA, Field B et al (2004) for the Ontario Prehospital Advance Life Support Study Group Advanced cardiac life support in out-of-hospital cardiac arrest. N Engl J Med 351:647–656PubMedCrossRefGoogle Scholar
  29. 29.
    The Public Access Defibrillation Trial Investigators (2004) Public-Access-Defibrillation and survival after out-of-hospital cardiac arrest (PAD trial). N Engl J Med 351:637–646CrossRefGoogle Scholar
  30. 30.
    Trappe HJ (2007) Herzrhythmusstörungen. In: Burchardi H, Larsen R, Kuhlen R (Hrsg) Die Intensivmedizin. 10., überarbeitete und erweiterte Aufl. Springer-Verlag, Berlin Heidelberg New York, S. 430–443Google Scholar
  31. 31.
    Trappe HJ, Rodriguez LM, Smeets JLRM, Pfitzner P (2000) Diagnostik und Therapie von Tachykardien mit breitem QRS-Komplex. Intensivmed 37:724–735CrossRefGoogle Scholar
  32. 32.
    Trappe HJ, Andresen D, Arntz HR (2005) Positionspapier zur „automatisierten externen Defibrillation“. Z Kardiol 94:287–295PubMedCrossRefGoogle Scholar
  33. 33.
    Van Alem AP, Vrenken RH, Tijssen JGP, Koster RW (2003) Use of automated external defibrillator by first responders in out of hospital cardiac arrest: prospective controlled trials. Br J Med 327:1312–1317CrossRefGoogle Scholar
  34. 34.
    Valenezuela TD, Roe DJ, Nichol G, Clark LL (2000) Outcomes of rapid defibrillation by security officers after cardiac arrest in casinos. N Engl J Med 343:1206–1209CrossRefGoogle Scholar
  35. 35.
    Voelkel WG, Luger TH (2002) Frühdefibrillation in alpinen Wintersportregionen am Beispiel Stubaier Gletscher. http://www.arcs.ac.at/dissb/ru036600Google Scholar
  36. 36.
    Walcott GP, Rollins DL, Smith WM, Ideker R (1996) Effect of changing capacitors between phases of a biphasic defibrillation shock. Pace 19:945–954PubMedGoogle Scholar
  37. 37.
    Weaver WD, Hill D, Fahrenbruch CE et al (1988) Use of the automatic external defibrillator in the management of out-of- hospital cardiac arrest. N Engl J Med 319:661–666PubMedGoogle Scholar
  38. 38.
    Wellens HJJ, Conover B (2006) The ECG in emergency decision making. 2nd edition. Chapter 1: Acute myocardial infarction. WB Saunders Company, Philadelphia, S. 1–27Google Scholar
  39. 39.
    White RD, Hankins DG, Atkinson EJ (2001) Patient outcomes following defibrillation with a low energy biphasic truncated exponential waveform in out-of-hospital cardiac arrest. Resuscitation 49:9–14PubMedCrossRefGoogle Scholar

Copyright information

© Spinger 2009

Authors and Affiliations

  1. 1.Medizinische Klinik II (Schwerpunkte Kardiologie und Angiologie)Ruhr-Universität BochumHerneDeutschland

Personalised recommendations