Skip to main content
Log in

Immunonutrition

Was ist das und wo hilft sie wirklich?

Immunonutrition – meaning and efficacy

  • ÜBERSICHT
  • Published:
Intensivmedizin und Notfallmedizin

Abstract

Immunonutrition describes the enteral or parenteral administration of certain substrates (arginine, omega-3 fatty acids, nucleotides, glutamine and antioxidants) with a putative immunomodulating function. Thus far, with the exception of glutamine and antioxidants, these immunomodulating substrates have not been examined separately but only in various combinations to establish their clinical efficacy.

In critically ill patients who predominantly require parenteral nutrition, there is evidence from large meta-analyses that parenteral glutamine supplementation may significantly lower septic morbidity and mortality. Therefore, parenteral glutamine supplementation is currently part of all concepts and recommendations addressing nutritional issues in critical care.

With respect to selective parenteral or enteral application of arginine or omega-3 fatty acids, there are still insufficient data on clinical effects or side effects to allow a definitive conclusion for nutritional care in the critically ill.

Only one metaanalysis addressed the clinical importance of a selective antioxidant therapy. It was concluded that such a therapy lowered mortality rates by about one third. However, this effect was unrelated to an improvement of infectious morbidity. Still, parenteral antioxidant supplementation (especially of selenium) is currently considered beneficial in critically ill patients.

At the moment, two different substrate mixtures of various immunomodulating compounds are commercially available. One type contains arginine, omega-3 fatty acids, and antioxidants±glutamine (classic mixture), the other omega-3 fatty acids, dihomogamma linoleic acid and antioxidants (modified mixture). Due to the mixture concept, only summary effects can be examined clinically, and interactions between different substrates cannot be excluded.

According to large metaanalyses, there are neither beneficial nor detrimental effects of the classic mixture when used in unselected cohorts of critically ill patients. In patients with severe sepsis, negative side effects of the classical mixture may possibly exist (enhancement of immunosuppression in the specific immune system). Therefore, use of the classical mixture is not recommended in the latter patients.

On the other hand, there is increasing evidence for beneficial clinical effects of the modified mixtures in critically ill and also in septic patients. The modified mixture improved pulmonary function and outcome in ventilated patients significantly, and is currently incorporated into nutritional recommendations of various societies.

Zusammenfassung

Die Immunonutrition umfasst die enterale oder parenterale Zufuhr von Substraten (Arginin, Omega-3-Fettsäuren, Nukleotide, Glutamin und Antioxidantien), die alle immunmodulierend sein können. In der Praxis wurden diese immunmodulatorischen Substrate mit Ausnahme von Glutamin und den Antioxidantien bisher nicht getrennt, sondern nur in unterschiedlichen Kombinationen auf ihre klinischen Wirkungen hin untersucht.

Bei kritisch kranken Patienten, die überwiegend parenteral ernährt werden müssen, lässt sich anhand von großen Metaanalysen zeigen, dass eine parenterale Glutamin-Supplementierung die septische Morbidität und die Letalität allgemein signifikant senken kann. Somit ist die zusätzliche Glutaminzufuhr heute fester Bestandteil aller parenteralen Ernährungskonzepte und Therapieempfehlungen.

Für die isolierte Zufuhr von Fischöl oder Arginin ist die Datenlage zur klinischen Effizienz derzeit sehr mangelhaft. Empfehlungen für den ernährungsmedizinischen Einsatz dieser Substrate bei Intensivpatienten sind deswegen nicht möglich.

Zur klinischen Relevanz einer selektiven Antioxidantien-Therapie existiert bisher nur eine einzige Metaanalyse. Zentrales Ergebnis war, dass eine derartige Therapie die Letalität signifikant um etwa ein Drittel senken kann, ohne jedoch gleichzeitig die infektiöse Morbidität relevant zu verändern. Trotzdem wird derzeit die routinemäßige parenterale Zufuhr speziell von Selen bei Intensivpatienten als günstig erachtet.

Zur enteralen Kombinationstherapie existieren derzeit zwei verschiedene Ansätze, nämlich einmal die klassische Immunonutrition (kombinierte Zufuhr von Arginin, Fischöl, Antioxidantien ± Glutamin) und dann die selektiveren Kombinationspräparate mit gleichzeitiger Zufuhr von Fischöl, Dihomogamma-Linolensäure und Antioxidantien. Aufgrund der unterschiedlichen Substratkombinationen können in der Praxis nur die Summationseffekte klinisch beurteilt werden, wobei Interaktionen zwischen einzelnen Substraten nicht ausgeschlossen werden können.

Nach aktueller Datenlage (große Metaanalysen) lässt sich für die klassische Immunonutrition bei Intensivpatienten im Allgemeinen weder ein klinischer Vorteil noch Nachteil zeigen. Bei Patienten mit schwerer Sepsis scheinen negative Auswirkungen (Verstärkung der Immunschwäche) denkbar, so dass gegenwärtig der Einsatz dieser klassischen Kombinationspräparate bei kritisch kranken Patienten nicht empfohlen wird.

Andererseits zeichnet sich für die selektiveren Kombinationspräparate eine Therapieempfehlung ab, die auch den kritisch kranken, septischen Patienten mit einschließt. Die kombinierte Zufuhr von Fischöl, Dihomogamma-Linolensäure und Antioxidantien verbesserte in mehreren kontrollierten Studien die Lungenfunktion bei ARDS-Patienten und die Letalität in der Sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  1. Hartl WH, Inthorn D (2000) Systemreaktionen nach chirurgischen Eingriffen. In: Bruch P, Trentz O (Hrsg) Verlag Urban und Schwarzenberg, München, p 223–242

  2. Kelly D, Wischmeyer PE (2003) Role of L-glutamine in critical illness: new insights. Curr Opin Clin Nutr Metab Care 6:217–222

    Article  PubMed  CAS  Google Scholar 

  3. Melis GC, ter Wengel N, Boelens PG, van Leeuwen PA (2004) Glutamine: recent developments in research on the clinical significance of glutamine. Curr Opin Clin Nutr Metab Care 7:59–70

    Article  PubMed  CAS  Google Scholar 

  4. Dhaliwal R, Heyland DK (2005) Nutrition and infection in the intensive care unit: what does the evidence show? Curr Opin Crit Care 11:461–467

    Article  PubMed  Google Scholar 

  5. Garcia-de-Lorenzo A, Zarazaga A, Garcia-Luna PP, Gonzalez-Huix F, Lopez- Martinez J, Mijan A, Quecedo L, Casimiro C, Usan L, del Llano J (2003) Clinical evidence for enteral nutritional support with glutamine: a systematic review. Nutrition 19:805–811

    Article  PubMed  CAS  Google Scholar 

  6. Houdijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCamish MA, Teerlink T, Meuwissen SG, Haarman HJ, Thijs LG, van Leeuwen PA (1998) Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 352:772–776

    Article  PubMed  CAS  Google Scholar 

  7. Falcao de Arruda IS, de Aguilar-Nascimento JE (2004) Benefits of early enteral nutrition with glutamine and probiotics in brain injury patients. Clin Sci (Lond) 106:287–292

    Article  CAS  Google Scholar 

  8. Brantley S, Pierce J (2000) Effects of enteral glutamine on trauma patients. Nutrition in Clin Practice 15:S13.

    Article  Google Scholar 

  9. Garrel D, Patenaude J, Nedelec B, Samson L, Dorais J, Champoux J, D'Elia M, Bernier J (2003) Decreased mortality and infectious morbidity in adult burn patients given enteral glutamine supplements: a prospective, controlled, randomized clinical trial. Crit Care Med 31:2444–2449

    Article  PubMed  CAS  Google Scholar 

  10. Zhou YP, Jiang ZM, Sun YH, Wang XR, Ma EL, Wilmore D (2003) The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns: a randomized, double-blind, controlled clinical trial. JPEN J Parenter Enteral Nutr 27:241–245

    PubMed  CAS  Google Scholar 

  11. Jones C, Palmer TE, Griffiths RD (1999) Randomized clinical outcome study of critically ill patients given glutamine-supplemented enteral nutrition. Nutrition 15:108–115

    Article  PubMed  CAS  Google Scholar 

  12. Hall JC, Dobb G, Hall J, de Sousa R, Brennan L, McCauley R (2003) A prospective randomized trial of enteral glutamine in critical illness. Intensive Care Med 29:1710–1716

    Article  PubMed  Google Scholar 

  13. Schulman AS, Willcutts KF, Claridge JA, Evans HL, Radigan AE, O’Donnell KB, Camden JR, Chong TW, McElearney ST, Smith RL, Gazoni LM, Farinholt HM, Heuser CC, Lowson SM, Schirmer BD, Young JS, Sawyer RG (2005) Does the addition of glutamine to enteral feeds affect patient mortality? Crit Care Med 33(11):2501–2506

    Article  PubMed  CAS  Google Scholar 

  14. Griffiths RD, Jones C, Palmer A (1997) Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 13:295–302

    PubMed  CAS  Google Scholar 

  15. Goeters C, Wenn A, Mertes N, Wempe C, Van Aken H, Stehle P, Bone HG (2002) Parenteral L-analyl-L-glutamine improves 6-month outcome in critically ill patients. Crit Care Med 30:2032–2037

    Article  PubMed  CAS  Google Scholar 

  16. Wischmeyer PE, Lynch J, Liedel J, Wolfson R, Riehm J, Gottlieb L, Kahana M (2001) Glutamine administration reduces Gram-negative bacteremia in severely burned patients: a prospective, randomized, doubleblind trial versus isonitrogenous control. Crit Care Med 29:2075–2080

    Article  PubMed  CAS  Google Scholar 

  17. Fuentes-Orozco C, Anaya-Prado R, Gonzalez-Ojeda A, Arenas-Marquez H, Cabrera-Pivaral C, Cervantes-Guevara G, Barrera-Zepeda LM (2004) Lalanyl-L-glutamine-supplemented parenteral nutrition improves infectious morbidity in secondary peritonitis. Clin Nutr 231:13–21

    Article  CAS  Google Scholar 

  18. Powell-Tuck J, Jamieson CP, Bettany GE, Obeid O, Fawcett HV, Archer C, Murphy DL (1999) A double blind, randomised, controlled trial of glutamine supplementation in parenteral nutrition. Gut 45:82–88

    Article  PubMed  CAS  Google Scholar 

  19. Dechelotte P, Bleichne G, Hasselmann M (2002) Improved clinical outcome in ICU patients receiving alanyl-Lglutamine (Dipeptiven)-supplemeted total parenteral nutrition (TPN): a French double-blind multicenter study. Clin Nutr 21:S 1–2

    Google Scholar 

  20. Ziegler TR, Fernandez-Estivariz C, Griffith P, Szeszycki EE, Bazargan N, Luo M, Daingault NM, Dave N, Bergmann GF, McNally T, Battey CH, Furr CE, Gu LH, Jonas CR, Cotsonis GA, Jones DP, Galloway JR (2004) Parenteral nutrition supplemented with alanyl-glutamine dipeptide decreases infectious morbidity and improves organ function in critically ill post-operative patients: results of a double-blind, randomised, controlled pilot study. JPEN 28:S11.

    Google Scholar 

  21. Harbige LS (2003) Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids 38:323–341

    Article  PubMed  CAS  Google Scholar 

  22. Koch T, Heller AR (2005) Auswirkungen einer parenteralen Ernährung mit n-3-Fettsäuren auf das Therapieergebnis – Eine multizentrische Analyse bei 661 Patienten. Akt Ernähr Med 30:15–22

    Article  CAS  Google Scholar 

  23. Gomez-Jimenez J, Salgado A, Mourelle M, Martin MC, Segura RM, Peracaula R, Moncada S (1995) L-arginine: nitric oxide pathway in endotoxemia and human septic shock. Crit Care Med 23:253–258

    Article  PubMed  CAS  Google Scholar 

  24. Suchner U, Heyland DK, Peter K (2002) Immune-modulatory actions of arginine in the critically ill. Br J Nutr 87:S121–132

    Article  PubMed  CAS  Google Scholar 

  25. Lopez A, Lorente JA, Steingrub J, Bakker J, McLuckie A, Willatts S, Brockway M, Anzueto A, Holzapfel L, Breen D, Silverman MS, Takala J, Donaldson J, Arneson C, Grove G, Grossman S, Grover R (2004) Multiple-center, randomized, placebo-controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on survival in patients with septic shock. Crit Care Med 32:21–30

    Article  PubMed  CAS  Google Scholar 

  26. MacMicking JD, Nathan C, Hom G, Chartrain N, Fletcher DS, Trumbauer M, Stevens K, Xie QW, Sokol K, Hutchinson N et al (1995) Altered responses to bacterial infection and endotoxic shock in mice lacking inducible nitric oxide synthase. Cell 81:641–650

    Article  PubMed  CAS  Google Scholar 

  27. Wei XQ, Charles IG, Smith A, Ure J, Feng GJ, Huang FP, Xu D, Muller W, Moncada S, Liew FY (1995) Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375:408–411

    Article  PubMed  CAS  Google Scholar 

  28. Laubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nitric oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci USA 92:10 688–10 692

    Article  CAS  Google Scholar 

  29. Laubach VE, Foley PL, Shockey KS, Tribble CG, Kron IL (1998) Protective roles of nitric oxide and testosterone in endotoxemia: evidence from NOS- 2-deficient mice. Am J Physiol 275:H2211–2218

    PubMed  CAS  Google Scholar 

  30. Nicholson SC, Grobmyer SR, Shiloh MU, Brause JE, Potter S, MacMicking JD, Dinauer MC, Nathan CF (1999) Lethality of endotoxin in mice genetically deficient in the respiratory burst oxidase, inducible nitric oxide synthase, or both. Shock 11:253–258

    Article  PubMed  CAS  Google Scholar 

  31. Zingarelli B, Hake PW, Cook JA (2002) Inducible nitric oxide synthase is not required in the development of endotoxin tolerance in mice. Shock 17:478–484

    Article  PubMed  Google Scholar 

  32. Baron RM, Carvajal IM, Liu X, Okabe RO, Fredenburgh LE, Macias AA, Chen YH, Ejima K, Layne MD, Perrella MA (2004) Reduction of nitric oxide synthase 2 expression by distamycin A improves survival from endotoxemia. J Immunol 173:4147–4153

    PubMed  CAS  Google Scholar 

  33. Argaman Z, Young VR, Noviski N, Castillo-Rosas L, Lu XM, Zurakowski D, Cooper M, Davison C, Tharakan JF, Ajami A, Castillo L (2003) Arginine and nitric oxide metabolism in critically ill septic pediatric patients. Crit Care Med 31:591–597

    Article  PubMed  CAS  Google Scholar 

  34. Griffith OW, Stuehr DJ (1995) Nitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol 57:707–736

    Article  PubMed  CAS  Google Scholar 

  35. Bruins MJ, Soeters PB, Lamers WH, Meijer AJ, Deutz NE (2002) L-arginine supplementation in hyperdynamic endotoxemic pigs: effect on nitric oxide synthesis by the different organs. Crit Care Med 30:508–517

    Article  PubMed  CAS  Google Scholar 

  36. Lovat R, Preiser JC (2003) Antioxidant therapy in intensive care. Curr Opin Crit Care 9:266–-270

    Article  PubMed  Google Scholar 

  37. Heyland DK, Dhaliwal R, Suchner U, Berger MM (2005) Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intensive Care Med 31:327–337

    Article  PubMed  Google Scholar 

  38. Gadek JE, DeMichele SJ, Karlstad MD, Pacht ER, Donahoe M, Albertson TE, Van Hoozen C, Wennberg AK, Nelson JL, Noursalehi M (1999) Effect of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in patients with acute respiratory distress syndrome. Enteral Nutrition in ARDS Study Group. Crit Care Med 27:1409–1420

    Article  PubMed  CAS  Google Scholar 

  39. Singer P, Theilla M, Fisher H, Gibstein L, Grozovski E, Cohen J (2006) Benefit of an enteral diet enriched with eicosapentaenoic acid and gamma-linolenic acid in ventilated patients with acute lung injury. Crit Care Med 34(4):1033–1038

    Article  PubMed  CAS  Google Scholar 

  40. Pontes-Arruda A, Aragao AM, Albuquerque JD (2006) Effects of enteral feeding with eicosapentaenoic acid, gamma-linolenic acid, and antioxidants in mechanically ventilated patients with severe sepsis and septic shock. Crit Care Med 34(9):2325–2333

    Article  PubMed  CAS  Google Scholar 

  41. Heyland DK, Novak F, Drover JW, Jain M, Su X, Suchner U (2001) Should immunonutrition become routine in critically ill patients? A systematic review of the evidence. JAMA 286:944–953

    Article  PubMed  CAS  Google Scholar 

  42. Heyland DK, Samis A (2003) Does immunonutrition in patients with sepsis do more harm than good? Intensive Care Med 29:669–671

    PubMed  Google Scholar 

  43. Bower RH, Cerra FB, Bershadsky B, Licari JJ, Hoyt DB, Jensen GL, Van Buren CT, Rothkopf MM, Daly JM, Adelsberg BR (1995) Early enteral administration of a formula (Impact) supplemented with arginine, nucleotides, and fish oil in intensive care unit patients: results of a multicenter, prospective, randomized, clinical trial. Crit Care Med 23:436–449

    Article  PubMed  CAS  Google Scholar 

  44. Dent D (2002) Immunonutrition may increase mortality in critically ill patients with pneumonia: results of a randomised trial. Crit Care Med 30:A17

    Google Scholar 

  45. Bertolini G, Iapichino G, Radrizzani D, Facchini R, Simini B, Bruzzone P, Zanforlin G, Tognoni G (2003) Early enteral immunonutrition in patients with severe sepsis: results of an interim analysis of a randomized multicentre clinical trial. Intensive Care Med 29:834–840

    Article  PubMed  Google Scholar 

  46. Heyland DK, Dhaliwal R, Drover JW, Gramlich L, Dodek P (2003) Canadian Critical Care Clinical Practice Guidelines Committee. Canadian clinical practice guidelines for nutrition support in mechanically ventilated, critically ill adult patients. JPEN J Parenter Enteral Nutr 27:355–373

    PubMed  Google Scholar 

  47. Roth E, Kudsk KA (2004) Immunonutrition: back to science. JPEN J Parenter Enteral Nutr 28:278–280

    Article  PubMed  Google Scholar 

  48. Montejo JC, Zarazaga A, Lopez-Martinez J, Blesa AL, Celaya S, Conejero R, Galban C, Garcia De Lorenzo A, Grau T, Mesejo A, Ortiz-Leyba C, Planas M, Ordonez J, Jimenez FJ (2004) Immunonutrition in critically ill patients. JPEN J Parenter Enteral Nutr. 28:192–194

    PubMed  Google Scholar 

  49. Montejo JC, Zarazaga A, Lopez-Martinez J, Urrutia G, Roque M, Blesa AL, Celaya S, Conejero R, Galban C, Garcia de Lorenzo A, Grau T, Mesejo A, Ortiz-Leyba C, Planas M, Ordonez J, Jimenez FJ (2003) Spanish Society of Intensive Care Medicine and Coronary Units. Immunonutrition in the intensive care unit. A systematic review and consensus statement. Clin Nutr 22:221–233

    Article  PubMed  Google Scholar 

  50. Caparros T, Lopez J, Grau T (2001) Early enteral nutrition in critically ill patients with a high-protein diet enriched with arginine, fiber, and antioxidants compared with a standard high-protein diet. The effect on nosocomial infections and outcome. JPEN J Parenter Enteral Nutr 25:299–309

    PubMed  CAS  Google Scholar 

  51. Kieft H, Roos AN, van Drunen JD, Bindels AJ, Bindels JG, Hofman Z (2005) Clinical outcome of immunonutrition in a heterogeneous intensive care population. Intensive Care Med 31:524–532

    Article  PubMed  Google Scholar 

  52. Heyland D, Dhaliwal R (2005) Immunonutrition in the critically ill: from old approaches to new paradigms. Intensive Care Med 31:501–503

    Article  PubMed  Google Scholar 

  53. Kreymann C, Ebener C, Hartl W, Von Heymann C, Spiess C (2003) Leitlinien enterale Ernährung – Intensivmedizin. Akt Ernährungsmedizin 28 S1:542–550

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. H. Hartl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartl, W.H., Rittler, P. & Jauch, KW. Immunonutrition. Intensivmed 44, 64–73 (2007). https://doi.org/10.1007/s00390-007-0772-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-007-0772-z

Key words

Schlüsselwörter

Navigation