Skip to main content
Log in

Identifizierung von pulsoxymetrischen Sicherheitsniveaus zur Vermeidung unbemerkter hypoxischer Episoden

Identification of pulse oximetry safety levels to prevent unrecognised hypoxic episodes

  • ORIGINALARBEIT
  • Published:
Intensivmedizin und Notfallmedizin

Summary

Objective

Continuous measurement of the functional oxygen saturation with a pulse oximeter (SpO2) is used to monitor sufficient oxygenation. The measurement can lead to falsely high or falsely low values compared to the gold standard (arterial blood gas analysis, SaO2). The aim of this study was to identify pulse oximetry safety levels to prevent unrecognised hypoxic episodes.

Methods

A retrospective analysis of 250 patient records was performed and 1,000 data pairs (simultaneous measurement SaO2 and SpO2) were collected. Bland-Altman analysis was used to evaluate the systematic (bias) and random error (precision) in measurement. The safety levels were determined 1) by graphical analysis of the correlation between SaO2 and SpO2 and 2) by tabular cluster analysis.

Results

Bland-Altman analysis revealed a good correlation between SaO2 and SpO2. The mean bias between the two techniques was calculated as ΔS=+0.5±2.32%. For a 95% confidence level (error probability 5%) pulse oximetry safety levels of 98% (89 and 86%) were identified to reach a SaO2 of 95% (90% and 85%).

Conclusion

To maintain a SaO2 of 95% (90 and 85%) pulse oximetry readings of 98% (89 and 86%) or more are required, if an error probability of 5% is accepted. Compliance with these safety levels during intensive care routine treatment may help to reduce the incidence of unrecognised hypoxic episodes (e. g. SaO2 below 95%).

Zusammenfassung

Einleitung

Die kontinuierliche Messung der funktionellen Sauerstoffsättigung mit einem Pulsoxymeter (SpO2) dient der ununterbrochenen Überwachung einer ausreichenden Oxygenierung. Dabei kann die Messung im Vergleich zum Goldstandard (arterielle Blutgasanalyse, SaO2) zu falsch hohen oder falsch niedrigen Messwerten führen. Das Ziel dieser Untersuchung war die Identifizierung von pulsoxymetrischen Sicherheitsniveaus, um unbemerkte hypoxische Episoden zu vermeiden.

Material und Methoden

In einer retrospektiven Krankenaktenanalyse wurden bei n=250 intensivmedizinischen Patienten insgesamt n=1000 Messwertpaare (zeitgleich SpO2 und SaO2) analysiert. Mit der Methode nach Bland-Altmann wurden der systematische (Bias) und zufällige Messfehler (Variabilität) evaluiert. Die Sicherheitsniveaus wurden 1) grafisch durch die Analyse des Zusammenhangs zwischen SaO2 und SpO2 und 2) tabellarisch durch eine Gruppenanalyse ermittelt.

Ergebnisse

Durch die Analyse nach Bland-Altmann wurde eine gute Korrelation zwischen SaO2 und SpO2 gefunden. Der mittlere Bias betrug ΔS=+0,5±2,32%. Als pulsoxymetrische Sicherheitsniveaus wurden auf der Basis einer statistischen Sicherheit von 95% (Fehlerwahrscheinlichkeit 5%) minimale SpO2-Werte von 98% (89 bzw. 86%) identifiziert, falls eine SaO2 von 95% (90 bzw. 85%) eingehalten werden sollte.

Schlussfolgerung

Zur Einhaltung einer SaO2 von 95% (90 bzw. 85%) ist bei einer akzeptierten Fehlerwahrscheinlichkeit von 5% ein pulsoxymetrischer Messwert von mindestens 98% (89 bzw. 86%) erforderlich. Die Einhaltung dieser Sicherheitsniveaus während der intensivmedizinischen Routinebehandlung kann helfen, die Inzidenz unbeabsichtigter hypoxischer Episoden (z. B. SaO2<95%) zu vermindern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aoyagi T, Kishi M, Yamaguchi K, Watanabe S (1974) Improvement of the earpiece oximeter. Abstracts of the 13th annual meeting of the Japanese Society ofMedical Electronics and Biological Engineering, pp 90–91 (Jap)

  2. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet I:307–309

    Google Scholar 

  3. Buschman A, Morris R, Warren D, Philip J, Raemer D (1987) Pulse Oximetry And The Incidence of Hypoxemia During Recovery From Anesthesia. Anesthesiology 67:3A

    Google Scholar 

  4. Comroe JH, Bothello S (1947) The unreliability of cyanosis in the recognition of arterial anoxemia. Am J Med Sci 214:1–9

    Google Scholar 

  5. Cote CJ, Goldstein EA, Fuchsman WH, Hoaglin DC (1988) The effect of nail polish on pulse oximetry. Anesth Analg 67(7):683–686

    PubMed  CAS  Google Scholar 

  6. Eichhorn JH (1989) Prevention of intraoperative anesthesia accidents and related severe injury through safety monitoring. Anesthesiology 70:572–577

    PubMed  CAS  Google Scholar 

  7. Gil NP, Wright B, Reilly C (1992) Relationship between hypoxaemic and cardiac ischaemic events in the perioperative period. Br J Anaesth 68:471–473

    Google Scholar 

  8. Hinkelbein J, Hose D, Ellinger K (2002) Pulsoxymetrie: Grundlagen, Funktionsprinzip, Anwendungsmöglichkeiten. Rettungsdienst 25:1067–1071

    Google Scholar 

  9. Hinkelbein J, Genzwuerker H, Fiedler F (2003) Reliability and Variability of Oxygen Saturation determined by Pulse Oximetry in Intensive Care Patients. Anesthesiology 99:452

    Google Scholar 

  10. Hinkelbein J, Osika A, Fiedler F (2004) Accuracy and precision of pulse oximetry in ventilated patients of an intensive care unit. Eur J Anaesthesiol 21(Suppl 32):179

    Google Scholar 

  11. Hinkelbein J, Koehler H, Fiedler F (2004) How artificial nails with applied nail polish do alter oxygen saturation determined by pulse oximetry. Eur J Anaesthesiol 21(Suppl 32):42–43

    Google Scholar 

  12. Hinkelbein J, Sogl R, Genzwürker HV, Fiedler F (2004) Nail polish: Bias Evaluation and Accuracy Validation for the Measurement of Oxygen Saturation determined by Pulse Oximetry. J Emerg Med 26(3):377

    Google Scholar 

  13. Hinkelbein J, Osika A, Genzwürker H, Fiedler F (2004) Identifizierung eines 95%-Sicherheitsniveaus zur Vermeidung falsch hoher pulsoxymetrischer Messwerte. Intensivmed 41 (Suppl 1):I/23–24

    Google Scholar 

  14. Hinkelbein J, Genzwürker HV, Fiedler F (2005) Detection of a Systolic Threshold for Reliable Readings in Pulse Oximetry. Resuscitation 64(3):313–317

    Article  Google Scholar 

  15. Jensen LA, Onyskiw JE, Prasad NGN (1998) Meta-analysis of arterial oxygen saturation monitoring by pulse oximetry in adults. Heart Lung 27(6):387–408

    Article  PubMed  CAS  Google Scholar 

  16. Jubran A (2004) Pulse oximetry. Intensive Care Med 30:2017–2020

    Article  PubMed  Google Scholar 

  17. Moller JT, Johannessen NW, Espersen K (1993) Randomized evaluation of pulse oximetry in 20 802 patients: II. Perioperative events and postoperative complications. Anesthesiology 78:445–453

    PubMed  CAS  Google Scholar 

  18. Pedersen T, Moller AM, Pedersen BD (2003) Pulse oximetry for perioperative monitoring: systematic review of randomized, controlled trials. Anesth Analg 96:426–431

    PubMed  Google Scholar 

  19. Ralston AC, Webb RK, Runciman WB (1991) Potential errors in pulse oximetry. III: Effects of interferences, dyes, dyshaemoglobins and other pigments. Anaesthesia 46(4):291–295

    PubMed  CAS  Google Scholar 

  20. Seguin P, Le Rouzo A, Tanguy M, Guillou YM, Feuillu A, Mallédant Y (2000) Evidence for the need of bedside accuracy of pulse oximetry in an intensive care unit. Crit Care Med 28(3):703–706

    PubMed  CAS  Google Scholar 

  21. Severinghaus JW, Honda Y (1987) History of blood gas analysis. VII. Pulse oximetry. J Clin Monit 3(2):135–138

    PubMed  CAS  Google Scholar 

  22. Severinghaus JW, Spellman MJ Jr (1990) Pulse oximeter failure thresholds in hypotension and vasoconstriction. Anesthesiology 73(3):532–537

    PubMed  CAS  Google Scholar 

  23. Severinghaus JW, Kelleher JF (1992) Recent developments in pulse oximetry. Anesthesiology 76:1018–1038

    PubMed  CAS  Google Scholar 

  24. Tinker JH, Dull DL, Caplan RA, Ward RJ, Cheney FW (1989) Role of Monitoring Devices in Prevention of Anesthetic Mishaps: A Closed Claims Analysis. Anesthesiology 71:541–546

    PubMed  CAS  Google Scholar 

  25. Van de Louw A, Cracco C, Cerf C, Harf A, Duvaldestin P, Lemaire F, Brochard L (2001) Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med 27:1606–1613

    PubMed  CAS  Google Scholar 

  26. Wouters PF, Gehring H, Meyfroidt G, Ponz L, Gil-Rodriguez J, Hornberger C, Bonk R, Frankenberger H, Benekos K, Valais J, Avgerinos J, Konecny E (2002) Accuracy of pulse oximeters: the European multi-center trial. Anesth Analg 94(1 Suppl):S13–16

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Hinkelbein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hinkelbein, J., Osika, A., Genzwürker, H.V. et al. Identifizierung von pulsoxymetrischen Sicherheitsniveaus zur Vermeidung unbemerkter hypoxischer Episoden. Intensivmed 42, 653–660 (2005). https://doi.org/10.1007/s00390-005-0628-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-005-0628-3

Key words

Schlüsselwörter

Navigation