Skip to main content
Log in

Kontrastmittel-induzierte Nephropathie

Contrast-induced nephropathy

  • ÜBERSICHT
  • Published:
Intensivmedizin + Notfallmedizin

Summary

The use of iodinated contrast media (CM) continues to be a common cause of hospital-acquired acute renal failure (ARF) and its development increases the in-hospital mortality significantly. Thus, considerable efforts have been made to develop techniques to prevent acute renal failure, or to facilitate its recovery. Various strategies for the prevention of contrast-induced nephropathy (CN) have been studied, with conflicting results. Most studies used hydration as a basic intervention maneuver. Pharmaceutical interventions included the use of antioxidants, adenosine antagonists, sodium bicarbonate, domapine, prostaglandins, etc. Trials with new radio contrast agents (i. e., iodixanol) or gadolinium-containing agents has been limited to a few patients. The results of these trials will be reviewed by this paper, as well as the use of dialysis in order to treat and prevent contrast damage to the kidney.

Zusammenfassung

Die Anwendung von Röntgenkontrastmitteln ist eine der häufigsten Ursachen einer akuten Verschlechterung der Nierenfunktion im Rahmen eines Krankenhausaufenthaltes. Durch diese so genannte „Kontrastmittelnephropathie“ wird die Mortalität der Patienten deutlich gesteigert. Eine Vielzahl von Präventionsstrategien wurden in den letzten Jahren entwickelt, die hinsichtlich der Studienlage sehr unterschiedliche Resultate ergaben. Die Mehrzahl der Studien hatten eine Hydratation als Basisstrategie. Pharmakologische Interventionen beinhalteten Studien mit Antioxidantien, Bikarbonat, Adenosinantagonisten, Dopamin, Prostaglandine u. a. Der Versuch neue Kontrastmittel einzusetzen ist bisher nur in wenigen Studien erfolgreich. Die Resultate der vorliegenden Studien werden innerhalb dieser Übersicht ausführlich beschrieben und bewertet, einschließlich des Einsatzes der Dialyse im Rahmen der Kontrastmittelgabe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Morcos SK, Thomsen HS, Webb JA (1999) Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol 9(8):1602–1613

    Article  Google Scholar 

  2. Bettmann MA (1991) The evaluation of contrast-related renal failure [comment]. AJR Am J Roentgenol 157:66–68

    Google Scholar 

  3. Hunter JV, Kind PRN (1992) Nonionic iodinated contrast media: potential renal damage assessed with enzymuria. Radiology 183:101–104

    Google Scholar 

  4. Byrd L, Sherman RL (1979) Radiocontrast-induced acute renal failure: a clinical and pathological review. Medicine 58:270–279

    Google Scholar 

  5. Parfrey PS, Griffiths SM, Barrett BJ, Paul MD, Genge M, Withers J et al (1989) Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med 320:143–149

    Google Scholar 

  6. Schwab SJ, Hlatky MA, Pieper KS, Davidson CJ, Morris KG, Skelton TN et al (1989) Contrast nephrotoxicity: a randomized controlled trial of a nonionic and an ionic radiographic contrast agent. N Engl J Med 320:149–153

    Google Scholar 

  7. Berns AS (1989) Nephrotoxicity of contrast media [clinical conference]. Kidney Int 36(4):730–740

    Google Scholar 

  8. Davidson CJ, Hlatky M, Morris KG, Pieper K, Skelton TN, Schwab SJ et al (1989) Cardiovascular and renal toxicity of a nonionic radiographic contrast agent after cardiac catheterization. A prospective trial. Ann Intern Med 110:119–124

    Google Scholar 

  9. VanZee BE, Hoy WE, Talley TE, Jaenike JR (1978) Renal injury associated with intravenous pyelography in nondiabetic and diabetic patients. Ann Intern Med 89(1):51–54

    Google Scholar 

  10. Moore RD, Steinberg EP, Powe NR, Brinker JA, Fishman EK, Graziano S et al (1992) Nephrotoxicity of highosmolality versus low-osmolality contrast media: randomized clinical trial. Radiology 182(3):649–655

    Google Scholar 

  11. Barrett BJ, Parfrey PS, Vavasour HM, McDonald J, Kent G, Hefferton D et al (1992) Contrast nephropathy in patients with impaired renal function: high versus low osmolar media. Kidney Int 41:1274–1279

    Google Scholar 

  12. Miller DL, Chang R, Wells WT, Dowjat BA, Malinosky RM, Doppman JL (1988) Intravascular contrast media: effect of dose on renal function. Radiology 167(3):607–611

    Google Scholar 

  13. Rosovsky MA, Rusinek H, Berenstein A, Basak S, Setton A, Nelson K (1996) High-dose administration on nonionic contrast media: a retrospective review. Radiology 200:119–122. Ref Type: Journal (Full)

    Google Scholar 

  14. Donaldson IML (1968) Comparosin of the renal clearance of inulin and radioactive diatrizoate as measures for glomerular filtration rate in man. Clin Sci 35:513–519

    Google Scholar 

  15. Barrett BJ, Parfrey PS, McDonald JR, Hefferton DM, Reddy ER, McManamon PJ (1992) Nonionic low-osmolality versus ionic high-osmolality contrast material for intravenous use in patients perceived to be at high risk: randomized trial [see comments]. Radiology 183:105–110

    Google Scholar 

  16. Deray G, Jacobs C (1995) Radiocontrast nephrotoxicity. A review. Invest Radiol 30(4):221–225

    Google Scholar 

  17. Katholi RE, Taylor GJ, Woods WT, Womack KA, Katholi CR, McCann WP et al (1993) Nephrotoxicity of nonionic low-osmolality versus ionic high-osmolality contrast media: a prospective double-blind randomized comparison in human beings. Radiology 186:183–187

    Google Scholar 

  18. Rudnick MR, Goldfarb S, Wexler L, Ludbrook PA, Murphy MJ, Halpern EF et al (1995) Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. Kidney Int 47:254–261

    CAS  PubMed  Google Scholar 

  19. Barrett BJ, Carlisle EJ (1993) Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 188:171–178

    Google Scholar 

  20. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ et al (2003) Nephrotoxic Effects in High-Risk Patients Undergoing Angiography. N Engl J Med 348(6):491–499

    Google Scholar 

  21. Weissleder R (1996) Can gadolinium be safely given in renal failure? AJR Am J Roentgenol 167(1):278–279

    Google Scholar 

  22. Kaufman JA, Geller SC, Waltman AC (1996) Renal insufficiency: gadopentetate dimeglumine as a radiographic contrast agent during peripheral vascular interventional procedures. Radiology 198(2):579–581

    Google Scholar 

  23. Spinosa DJ, Matsumoto AH, Angle JF, Hagspiel KD, McGraw JK, Ayers C (1999) Renal insufficiency: usefulness of gadodiamide-enhanced renal angiography to supplement CO2-enhanced renal angiography for diagnosis and percutaneous treatment. Radiology 210(3):663–672

    Google Scholar 

  24. Hammer FD, Goffette PP, Malaise J, Mathurin P (1999) Gadolinium dimeglumine: an alternative contrast agent for digital subtraction angiography. Eur Radiol 9(1):128–136

    Google Scholar 

  25. Swan SK, Lambrecht LJ, Townsend R, Davies BE, McCloud S, Parker JR et al (1999) Safety and pharmacokinetic profile of gadobenate dimeglumine in subjects with renal impairment. Invest Radiol 34(7):443–448

    Google Scholar 

  26. Arsenault TM, King BF, Marsh-JW J, Goodman JA, Weaver AL, Wood CP et al (1996) Systemic gadolinium toxicity in patients with renal insufficiency and renal failure: retrospective analysis of an initial experience. Mayo Clin Proc 71(12):1150–1154

    CAS  PubMed  Google Scholar 

  27. Tombach B, Bremer C, Reimer P, Kisters K, Schaefer RM, Geens V et al (2001) Renal tolerance of a neutral gadolinium chelate (gadobutrol in patients with chronic renal failure: Results of a randomized study. Radiology 218(3):651–657

    Google Scholar 

  28. Erley CM, Bader BD, Berger ED, Tuncel N, Winkler S, Tepe G et al (2004) Gadolinium-based contrast media compared with iodinated media for digital subtraction angiography in azotaemic patients. Nephrology Dialysis Transplantation 19(10):2526–2531

    Google Scholar 

  29. Sancak T, Bilgic S, Sanlidilek U (2002) Gadodiamide as an alternative contrast agent in intravenous digital subtraction angiography and interventional procedures of the upper extremity veins. Cardiovascular and Interventional Radiology 25(1):49–52

    Google Scholar 

  30. Seeger JM, Self S, Harward TR, Flynn TC, Hawkins IF Jr (1993) Carbon dioxide gas as an arterial contrast agent. Ann Surg 217(6):688–697

    Google Scholar 

  31. Hawkins IF Jr, Wilcox CS, Kerns SR, Sabatelli FW (1994) CO2 digital angiography: a safer contrast agent for renal vascular imaging? Am J Kidney Dis 24(4):685–694

    Google Scholar 

  32. Zwaan M, Kloess W, Kagel C, Kummer KD, Matthies ZS, Schutz RM et al (1996) [Carbon dioxide as an alternative contrast medium in peripheral angiography (published erratum appears in Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr Aug; 165(2):180)]. Rofo Fortschr Geb Rontgenstr Neuen Bildgeb Verfahr 164(5):445–448

    Google Scholar 

  33. Kummer KD, Kloess W, Marienhoff N, Schutz RM, Zwaan M, Weiss HD (1997) [Angiography during interventional procedures with carbon dioxide (CO2) (carbo-angiography) in patients with increased contrast media risk]. Zentralbl Chir 122(9):725–729

    Google Scholar 

  34. Solomon R, Werner C, Mann D, D’Elia J, Silva P (1994) Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med 331:1416–1420

    Google Scholar 

  35. Carraro M, Stacul F, Collari P, Toson D, Zucconi F, Torre R et al (1993) Contrast media nephrotoxicity: urinary protein and enzyme pattern in patients with or without saline infusion during digital subtracting angiography. Contrib Nephrol 101:251–254

    Google Scholar 

  36. Jakobsen JA (1995) Renal effects of iodixanol in healthy volunteers and patients with severe renal failure. Acta Radiol Suppl 399:191–195

    Google Scholar 

  37. Shieh SD, Hirsch SR, Boshell BR, Pino JA, Alexander LJ, Witten DM et al (1982) Low risk of contrast media-induced acute renal failure in nonazotemic type 2 diabetes mellitus. Kidney Int 21(5):739–743

    Google Scholar 

  38. Taylor AJ, Hotchkiss D, Morse RW, McCabe J (1998) PREPARED: Preparation for Angiography in Renal Dysfunction: a randomized trial of inpatient vs outpatient hydration protocols for cardiac catheterization in mild-to-moderate renal dysfunction. Chest 114(6):1570–1574

    Google Scholar 

  39. Bader BD, Berger ED, Heede MB, Silberbaur I, Duda S, Risler T et al (2004) What is the best hydration regimen to prevent contrast media-induced nephrotoxicity? Clinical Nephrology 62(1):1–7. Ref Type: Journal (Full)

    Google Scholar 

  40. Heyman SN, Brezis M, Greenfeld Z, Rosen S (1989) Protective role of furosemide and saline in radiocontrastinduced acute renal failure in the rat. Am J Kidney Dis 14(5):377–385

    Google Scholar 

  41. Golman K, Cederholm C (1990) Contrast medium-induced acute renal failure. Can it be prevented? Invest Radiol 25 Suppl 1:S127–S128

    Google Scholar 

  42. Weinstein JM, Heyman S, Brezis M (1992) Potential deleterious effect of furosemide in radiocontrast nephropathy. Nephron 62:413–415

    Google Scholar 

  43. Mueller C, Buerkle G, Buettner HJ, Petersen J, Perruchoud AP, Eriksson U et al (2002) Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 162(3):329–336

    Google Scholar 

  44. Erley CM, Heyne N, Burgert K, Langanke J, Risler T, Osswald H (1997) Prevention of radiocontrast induced nephropathy by adenosine antagonists in rats with chronic nitric oxide deficiency. J Am Soc Nephrol 8(7):1125–1132

    Google Scholar 

  45. Erley CM, Duda SH, Rehfuss D, Scholtes B, Bock J, Müller C et al (1999) Prevention of Radiocontrast-Media-Induced Nephropathy in Patients with Preexisting Renal Insufficiency by Hydration in Combination with the Adenosine Antagonist Theophylline. Nephrol Dial Transplant 14(5):1146–1149

    Google Scholar 

  46. Erley CM, Duda SH, Schlepckow S, Koehler J, Huppert PE, Strohmaier WL et al (1994) Adenosine antagonist theophylline prevents the reduction of glomerular filtration rate after contrast media application. Kidney Int 45:1425–1431

    Google Scholar 

  47. Katholi RE, Taylor GJ, McCann WP, Woods WT, Womack KA, McCoy CD et al (1995) Nephrotoxicity from contrast media: attenuation with theophylline. Radiology 195:17–22

    Google Scholar 

  48. Wagner HJ, Kalinowski M, Klose KJ, Alfke H (2001) The use of gadolinium chelates for x-ray digital subtraction angiography. Investigative Radiology 36(5):257–265

    Google Scholar 

  49. Kapoor A, Kumar S, Gulati S, Gambhir S, Sethi RS, Sinha N (2002) The role of theophylline in contrast-induced nephropathy: a case-control study. Nephrology Dialysis Transplantation 17(11):1936–1941

    Google Scholar 

  50. Wambach G, Winkert T (1990) Nierenfunktionsstörungen nach Röntgenkontrastmittelgabe: Prophylaxe durch das atriale natriuretische Peptid? Nieren- und Hochdruckkrankheiten 19:312–317

    Google Scholar 

  51. Margulies KB, McKinley LJ, Cavero PG, Burnett JCJ (1990) Induction and prevention of radiocontrast-induced nephropathy in dogs with heart failure. Kidney Int 38:1101–1108

    Google Scholar 

  52. Rahman SN, Kim GE, Mathew AS, Goldberg CA, Allgren R, Schrier RW et al (1994) Effects of atrial natriuretic peptide in clinical acute renal failure. Kidney Int 45(6):1731–1738

    CAS  PubMed  Google Scholar 

  53. Fenves AZ, Allgren RL (1995) Radiocontrast dye-induced acute tubular necrosis (ATN): atrial natriuretic peptide (ANP) versus placebo. J Am Soc Nephrol 6:463. Ref Type: Abstract

    Google Scholar 

  54. Kurnik BR, Allgren RL, Genter FC, Solomon RJ, Bates ER, Weisberg LS (1998) Prospective study of atrial natriuretic peptide for the prevention of radiocontrast-induced nephropathy. Am J Kidney Dis 31(4):674–680

    Google Scholar 

  55. Bakris GL, Burnett JCJ (1985) A role for calcium in radiocontrast-induced reductions in renal hemodynamics. Kidney Int 27:465–468

    Google Scholar 

  56. Neumayer HH, Junge W, Kufner A, Wenning A (1989) Prevention of radiocontrast-media-induced nephrotoxicity by the calcium channel blocker nitrendipine: a prospective randomised clinical trial. Nephrol Dial Transplant 4:1030–1036

    Google Scholar 

  57. Russo D, Testa A, Volpe LD, Sansone G (1990) Randomised propspective study on renal effects of two different contrast media in humans: protective role of a calcium channel blocker. Nephron 55:254–257

    Google Scholar 

  58. Carraro M, Mancini W, Artero M, Stacul F, Grotto M, Cova M et al (1996) Dose effect of nitrendipine on urinary enzymes and microproteins following non-ionic radiocontrast administration. Nephrol Dial Transplant 11(3):444–448

    Google Scholar 

  59. Spangberg Viklund B, Berglund J, Nikonoff T, Nyberg P, Skau T, Larsson R (1996) Does prophylactic treatment with felodipine, a calcium antagonist, prevent low-osmolar contrast-induced renal dysfunction in hydrated diabetic and nondiabetic patients with normal or moderately reduced renal function? Scand J Urol Nephrol 30(1):63–68

    Google Scholar 

  60. Weisberg LS, Kurnik PB, Kurnik BR (1993) Dopamine and renal blood flow in radiocontrast-induced nephropathy in humans. Ren Fail 15:61–68

    Google Scholar 

  61. Hall KA, Wong RW, Hunter GC, Camazine BM, Rappaport WA, Smyth SH et al (1992) Contrast-induced nephrotoxicity: the effects of vasodilator therapy. J Surg Res 53(4):317–320

    Google Scholar 

  62. Kapoor A, Sinha N, Sharma RK, Shrivastava S, Radhakrishnan S, Goel PK et al (1996) Use of dopamine in prevention of contrast induced acute renal failure–a randomised study. Int J Cardiol 53(3):233–236

    Google Scholar 

  63. Abizaid AS, Clark CE, Mintz GS, Dosa S, Popma JJ, Pichard AD et al (1999) Effects of dopamine and aminophylline on contrast-induced acute renal failure after coronary angioplasty in patients with preexisting renal insufficiency. Am J Cardiol 83(2):260–263, A5

    Google Scholar 

  64. Chertow GM, Lazarus JM, Sayegh MH, Allgren RL (1995) Is the administration of dopamine associated with adverse outcomes in severe acute renal failure? J Am Soc Nephrol 6:460 Ref Type: Abstract

    Google Scholar 

  65. DiMari J, Megyesi J, Udvarhelyi N, Price P, Davis R, Safirstein R (1997) TI—N-acetyl cysteine ameliorates ischemic renal failure. Am J Physiol 272:F292–F298

    Google Scholar 

  66. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W (2000) Prevention of Radiographic-Contrast-Agent-Induced Reductions in Renal Function by Acetylcysteine. N Engl J Med 343(3):180–184

    Article  CAS  PubMed  Google Scholar 

  67. Birck R, Krzossok S, Markowetz F, Schnulle P, van der Woude FJ, Braun C (2003) Acetylcysteine for prevention of contrast nephropathy: metaanalysis. Lancet 362(9384):598–603

    Google Scholar 

  68. Pannu N, Manns B, Lee H, Tonelli M (2004) Systematic review of the impact of N-acetylcysteine on contrast nephropathy. Kidney International 65(4):1366–1374

    Google Scholar 

  69. Kshirsagar AV, Poole C, Mottl A, Shoham D, Franceschini N, Tudor G et al (2004) N-Acetylcysteine for the Prevention of Radiocontrast Induced Nephropathy: A Meta-Analysis of Prospective Controlled Trials. Journal Of The American Society Of Nephrology 15(3):761–769

    Google Scholar 

  70. Hoffmann U, Fischereder M, Kruger B, Drobnik W, Kramer BK (2004) The Value of N-Acetylcysteine in the Prevention of Radiocontrast Agent-Induced Nephropathy Seems Questionable. Journal Of The American Society Of Nephrology 15(2):407–410

    Google Scholar 

  71. Fishbane S, Durham JH, Marzo K, Rudnick M (2004) N-Acetylcysteine In The Prevention Of Radiocontrast-Induced Nephropathy. Journal Of The American Society Of Nephrology 15(2):251–260

    Google Scholar 

  72. Merten GJ, Burgess WP, Gray LV, Holleman JH, Roush TS, Kowalchuk GJ et al (2004) Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 291(19):2328–2334

    Google Scholar 

  73. Lehnert T, Gondolf K, Schäffner T, Schollmeyer P, Keller E (1995) Effect of hemodialysis after contrast media application in adults with renal insufficiency. J Am Soc Nephrol 6:469. Ref Type: Abstract

    Google Scholar 

  74. Berger ED, Bader BD, Bösker J, Risler T, Erley CM (2000) Kontrastmittelinduziertes Nierenversagen lässt sich durch Hämodialyse nicht verhindern. Deutsche Medizinische Wochenschrift 126:162–166

    Google Scholar 

  75. Frank H, Werner D, Lorusso V, Klinghammer L, Daniel WG, Kunzendorf U et al (2003) Simultaneous hemodialysis during coronary angiography fails to prevent radiocontrast-induced nephropathy in chronic renal failure. Clin Nephrol 60(3):176–182

    Google Scholar 

  76. Marenzi G, Marana I, Lauri G, Assanelli E, Grazi M, Campodonico J et al (2003) The Prevention of Radiocontrast-Agent-Induced Nephropathy by Hemofiltration. N Engl J Med 349(14):1333–1340

    Google Scholar 

  77. Younathan CM, Kaude JV, Cook MD, Shaw GS, Peterson JC (1994) Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol 163 (4):969–971

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. M. Erley.

Additional information

Serie: Die Intensivtherapie bei akutem Nierenversagen Herausgegeben von H. Kierdorf (Braunschweig)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erley, C.M. Kontrastmittel-induzierte Nephropathie. Intensivmed + Notfallmed 42, 39–46 (2005). https://doi.org/10.1007/s00390-005-0563-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00390-005-0563-3

Key words

Schlüsselwörter

Navigation