Skip to main content

Advertisement

Log in

Current status and prospect of immunotherapy for colorectal cancer

  • REVIEW
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Colorectal cancer is the most common gastrointestinal tumor in China. While significant progress has been achieved in traditional chemotherapy, radiotherapy, and targeted therapy, the prognosis of advanced colorectal cancer is poor, and the five-year survival rate is unsatisfactory. There is an urgent need to explore new treatment modalities. In this review, we examined the latest progress of colorectal cancer immunotherapy and discussed its future prospects.

Methods

We conducted a literature review to sort out the current status of immunotherapy for different types of colorectal cancer and discussed potential combination therapy options. Results Subsequent line therapy, first-line therapy and neoadjuvant therapy for MSI-H/dMMR colorectal cancer are discussed. In addition, combination therapy options for patients with MSS/pMMR colorectal cancer are presented. Finally, current valuable biomarkers for immunotherapy are highlighted.

Results

Subsequent line therapy, first-line therapy and neoadjuvant therapy for MSI-H/dMMR colorectal cancer are discussed. In addition, combination therapy options for patients with MSS/pMMR colorectal cancer are presented. Finally, current valuable biomarkers for immunotherapy are highlighted.

Conclusion

This review discussed the current status of immunotherapy for different types of colorectal cancer and biomarkers for immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All supporting data are included within the article.

References

  1. Zheng R, Zhang S, Zeng H, Wang S, Sun K, Chen R et al (2022) Cancer incidence and mortality in China, 2016. J Natl Cancer Cent 2(1):1–9

    Article  Google Scholar 

  2. Marabelle A, Le DT, Ascierto PA, Di Giacomo AM, De Jesus-Acosta A, Delord JP et al (2020) Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the phase II KEYNOTE-158 study. J Clin Oncol 38(1):1–10

    Article  CAS  PubMed  Google Scholar 

  3. Cui M, Li P, Mao Y, Zhang L, Xia P, Liu E et al (2020) Implication of microsatellite instability in Chinese cohort of human cancers. Cancer Manag Res 12:10287–10295

  4. Salem ME, Puccini A, Grothey A, Raghavan D, Goldberg RM, Xiu J et al (2018) Landscape of tumor mutation load, mismatch repair deficiency, and PD-L1 expression in a large patient cohort of gastrointestinal cancers. Mole Cancer Res 16(5):805–812

    Article  CAS  Google Scholar 

  5. Asaoka Y, Ijichi H, Koike K (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 373(20):1979

    Article  PubMed  Google Scholar 

  6. Le DT, Kim TW, Van Cutsem E, Geva R, Jäger D, Hara H et al (2020) Phase II open-label study of pembrolizumab in treatment-refractory, microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: KEYNOTE-164. J Clin Oncol 38(1):11–19

    Article  CAS  PubMed  Google Scholar 

  7. Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA et al (2017) Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 18(9):1182–1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. André T, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M et al (2022) Nivolumab plus low-dose ipilimumab in previously treated patients with microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: 4-year follow-up from CheckMate 142. Ann Oncol 33(10):1052–1060

    Article  PubMed  Google Scholar 

  9. Li J, Deng Y, Zhang W, Zhou AP, Guo W, Yang J et al (2021) Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. J Hematol Oncol 14(1):95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chen J, Quan M, Chen Z, Zeng T, Li Y, Zhou Y et al (2020) Camrelizumab in advanced or metastatic solid tumour patients with DNA mismatch repair deficient or microsatellite instability high: an open-label prospective pivotal trial. J Cancer Res Clin Oncol 146(10):2651–2657

    Article  CAS  PubMed  Google Scholar 

  11. Overman MJ, Lonardi S, Wong KYM, Lenz HJ, Gelsomino F, Aglietta M et al (2018) Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol 36(8):773–779

    Article  CAS  PubMed  Google Scholar 

  12. Lenz HJ, Van Cutsem E, Luisa Limon M, Wong KYM, Hendlisz A, Aglietta M et al (2022) First-line nivolumab plus low-dose ipilimumab for microsatellite instability-high/mismatch repair-deficient metastatic colorectal cancer: the phase II CheckMate 142 study. J Clin Oncol 40(2):161–170

    Article  CAS  PubMed  Google Scholar 

  13. Kopetz S, Guthrie KA, Morris VK, Lenz HJ, Magliocco AM, Maru D et al (2021) Randomized trial of irinotecan and cetuximab with or without vemurafenib in BRAF-mutant metastatic colorectal cancer (SWOG S1406). J Clin Oncol 39(4):285–294

    Article  CAS  PubMed  Google Scholar 

  14. André T, Shiu KK, Kim TW, Jensen BV, Jensen LH, Punt C et al (2020) Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N Engl J Med 383(23):2207–2218

    Article  PubMed  Google Scholar 

  15. Yang X, Yin R, Xu L (2018) Neoadjuvant PD-1 blockade in resectable lung cancer. N Engl J Med 379(9):e14

    Article  PubMed  Google Scholar 

  16. Necchi A, Anichini A, Raggi D, Briganti A, Massa S, Lucianò R et al (2018) Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J Clin Oncol 36(34):3353–3360

    Article  CAS  PubMed  Google Scholar 

  17. Chalabi M, Fanchi LF, Dijkstra KK, Van den Berg JG, Aalbers AG, Sikorska K et al (2020) Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat Med 26(4):566–576

    Article  CAS  PubMed  Google Scholar 

  18. Bando H, Tsukada Y, Inamori K, Togashi Y, Koyama S, Kotani D et al (2022) Preoperative chemoradiotherapy plus nivolumab before surgery in patients with microsatellite stable and microsatellite instability-high locally advanced rectal cancer. Clin Cancer Res 28(6):1136–1146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Llosa NJ, Cruise M, Tam A, Wicks EC, Hechenbleikner EM, Taube JM et al (2015) The vigorous immune microenvironment of microsatellite instable colon cancer is balanced by multiple counter-inhibitory checkpoints. Cancer Discov 5(1):43–51

    Article  CAS  PubMed  Google Scholar 

  20. O’Neil BH, Wallmark JM, Lorente D, Elez E, Raimbourg J, Gomez-Roca C et al (2017) Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with advanced colorectal carcinoma. PLoS ONE 12(12):e0189848

    Article  PubMed  PubMed Central  Google Scholar 

  21. Ebert PJR, Cheung J, Yang Y, McNamara E, Hong R, Moskalenko M et al (2016) MAP kinase inhibition promotes T cell and anti-tumor activity in combination with PD-L1 checkpoint blockade. Immunity 44(3):609–621

    Article  CAS  PubMed  Google Scholar 

  22. Hellmann MD, Kim TW, Lee CB, Goh BC, Miller WH Jr, Oh DY et al (2019) Phase Ib study of atezolizumab combined with cobimetinib in patients with solid tumors. Ann Oncol 30(7):1134–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Eng C, Kim TW, Bendell J, Argilés G, Tebbutt NC, Di Bartolomeo M et al (2019) Atezolizumab with or without cobimetinib versus regorafenib in previously treated metastatic colorectal cancer (IMblaze370): a multicentre, open-label, phase 3, randomised, controlled trial. Lancet Oncol 20(6):849–861

    Article  CAS  PubMed  Google Scholar 

  24. Wu RY, Kong PF, Xia LP, Huang Y, Li ZL, Tang YY et al (2019) Regorafenib promotes antitumor immunity via inhibiting PD-L1 and IDO1 expression in melanoma. Clin Cancer Res 25(14):4530–4541

    Article  CAS  PubMed  Google Scholar 

  25. Doleschel D, Hoff S, Koletnik S, Rix A, Zopf D, Kiessling F et al (2021) Regorafenib enhances anti-PD1 immunotherapy efficacy in murine colorectal cancers and their combination prevents tumor regrowth. J Exp Clin Cancer Res 40(1):288

  26. Fukuoka S, Hara H, Takahashi N, Kojima T, Kawazoe A, Asayama M et al (2020) Regorafenib plus nivolumab in patients with advanced gastric or colorectal cancer: an open-label, dose-escalation, and dose-expansion phase Ib trial (REGONIVO, EPOC1603). J Clin Oncol 38(18):2053–2061

    Article  CAS  PubMed  Google Scholar 

  27. Cousin S, Cantarel C, Guegan JP, Gomez-Roca C, Metges JP, Adenis A et al (2021) Regorafenib-avelumab combination in patients with microsatellite stable colorectal cancer (REGOMUNE): a single-arm, open-label, phase II trial. Clin Cancer Res 27(8):2139–2147

    Article  CAS  PubMed  Google Scholar 

  28. Wang C, Chevalier D, Saluja J, Sandhu J, Lau C, Fakih M (2020) Regorafenib and nivolumab or pembrolizumab combination and circulating tumor DNA response assessment in refractory microsatellite stable colorectal cancer. Oncologist 25(8):e1188–e1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li Q, Cheng X, Zhou C, Tang Y, Li F, Zhang B et al (2022) Fruquintinib enhances the antitumor immune responses of anti-programmed death receptor-1 in colorectal cancer. Front Oncol 12:841977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sun L, Huang S, Li D, Mao Y, Wang Y, Wu J (2021) Efficacy and safety of fruquintinib plus PD-1 inhibitors versus regorafenib plus PD-1 inhibitors in refractory microsatellite stable metastatic colorectal cancer. Front Oncol 11:754881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen EX, Jonker DJ, Loree JM, Kennecke HF, Berry SR, Couture F et al (2020) Effect of combined immune checkpoint inhibition vs best supportive care alone in patients with advanced colorectal cancer: the Canadian Cancer Trials Group CO.26 Study. JAMA Oncol 6(6):831–838

    Article  PubMed  Google Scholar 

  32. Trotta AM, Ottaiano A, Romano C, Nasti G, Nappi A, De Divitiis C et al (2016) Prospective evaluation of cetuximab-mediated antibody-dependent cell cytotoxicity in metastatic colorectal cancer patients predicts treatment efficacy. Cancer Immunol Res 4(4):366–374

    Article  CAS  PubMed  Google Scholar 

  33. Schmoll HJ, Arnold D, de Gramont A, Ducreux M, Grothey A, O’Dwyer PJ et al (2018) MODUL-a multicenter randomized clinical trial of biomarker-driven maintenance therapy following first-line standard induction treatment of metastatic colorectal cancer: an adaptable signal-seeking approach. J Cancer Res Clin Oncol 144(6):1197–1204

    Article  CAS  PubMed  Google Scholar 

  34. Antoniotti C, Rossini D, Pietrantonio F, Catteau A, Salvatore L, Lonardi S et al (2022) Upfront FOLFOXIRI plus bevacizumab with or without atezolizumab in the treatment of patients with metastatic colorectal cancer (AtezoTRIBE): a multicentre, open-label, randomised, controlled, phase 2 trial. Lancet Oncol 23(7):876–887

    Article  CAS  PubMed  Google Scholar 

  35. Antoniotti C, Rossini D, Pietrantonio F, Salvatore L, Marmorino F, Ambrosini M et al (2023) FOLFOXIRI plus bevacizumab and atezolizumab as upfront treatment of unresectable metastatic colorectal cancer (mCRC): updated and overall survival results of the phase II randomized AtezoTRIBE study. 41(16_suppl):3500-

  36. Martinelli E, Martini G, Famiglietti V, Troiani T, Napolitano S, Pietrantonio F et al (2021) Cetuximab rechallenge plus avelumab in pretreated patients with RAS wild-type metastatic colorectal cancer: the phase 2 single-arm clinical CAVE trial. JAMA Oncol 7(10):1529–1535

    Article  PubMed  Google Scholar 

  37. Lee LH, Cavalcanti MS, Segal NH, Hechtman JF, Weiser MR, Smith JJ et al (2016) Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma. Mod Pathol 29(11):1433–1442

  38. Marabelle A, Fakih M, Lopez J, Shah M, Shapira-Frommer R, Nakagawa K et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21(10):1353–1365

    Article  CAS  PubMed  Google Scholar 

  39. Schrock AB, Ouyang C, Sandhu J, Sokol E, Jin D, Ross JS et al (2019) Tumor mutational burden is predictive of response to immune checkpoint inhibitors in MSI-high metastatic colorectal cancer. Ann Oncol 30(7):1096–1103

    Article  CAS  PubMed  Google Scholar 

  40. Forgó E, Gomez AJ, Steiner D, Zehnder J, Longacre TA (2020) Morphological, immunophenotypical and molecular features of hypermutation in colorectal carcinomas with mutations in DNA polymerase ε (POLE). Histopathology 76(3):366–374

    Article  PubMed  Google Scholar 

  41. Kim JH, Kim SY, Baek JY, Cha YJ, Ahn JB, Kim HS et al (2020) A phase II study of avelumab monotherapy in patients with mismatch repair-deficient/microsatellite instability-high or POLE-mutated metastatic or unresectable colorectal cancer. Cancer Res Treat 52(4):1135–1144

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang F, Zhao Q, Wang YN, Jin Y, He MM, Liu ZX et al (2019) Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol 5(10):1504–1506

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was supported by the Natural Science Foundation of Anhui (Grant Number is 2108085MH290, Y Zhu), the Scientific Research Fund Project for Talent Introduction of Yijishan Hospital, Wannan Medical College in China (Grant Number is YR202116,Y Zhu), the Key Research Foundation of Wannan Medical College (Grant Number is WK2020ZF09,Y Zhu).

Author information

Authors and Affiliations

Authors

Contributions

W.Y. and H.Z. were responsible for writing most of the content, and W.L. wrote the biomarker section. Y.Z. and W.Y. reviewed and revised this review.

Corresponding author

Correspondence to Yiping Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Zheng, H., Lv, W. et al. Current status and prospect of immunotherapy for colorectal cancer. Int J Colorectal Dis 38, 266 (2023). https://doi.org/10.1007/s00384-023-04553-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00384-023-04553-z

Keywords

Navigation