Skip to main content

Advertisement

Log in

The JAK2 variant rs10758669 in Crohn’s disease: altering the intestinal barrier as one mechanism of action

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

The aetiology of intestinal barrier dysfunction in Crohn’s disease (CD) is poorly understood. Associations in relatives of CD families suggest a genetic basis, but the relevant variants are still unknown. We hypothesized that variants in genes occurring in pathways such as autophagy and IL23 signalling might contribute to CD by altering intestinal permeability.

Methods

We analysed five variants (rs10758669 within JAK2, rs744166 within STAT3, rs4958847, rs11747270 and rs13361189 within IRGM) in adult German inflammatory bowel disease patients (CD, n = 464; ulcerative colitis (UC), n = 292) and matched healthy controls (n = 508). These data were correlated with gastrointestinal permeability as assessed by lactulose/mannitol ratio in CD patients (n = 141) in remission.

Results

Our data confirm the association between JAK2 rs10758669 (p = 0.026, OR = 1.25, 95% CI = 1.04–1.50) and STAT3 rs744166 (p = 0.04, OR = 0.83, 95% CI = 0.688–0.998) with CD, but not UC. With respect to all the analysed IRGM variants, no association was found to either CD or UC. Among CD patients, an increased intestinal permeability was detected in 65 out of 141 patients (46.1%). Most importantly, patients carrying the C risk allele within JAK2 rs10758669 displayed an increased permeability more often compared with patients without the C allele (p = 0.004). No association with intestinal permeability was found for STAT3 rs744166 and all IRGM variants.

Conclusions

JAK2 rs10758669 and STAT3 rs744166 increase susceptibility for CD. We show that the A>C substitution in rs10758669 of the JAK2 gene is associated with increased intestinal permeability. Altering intestinal barrier function might thus be one mechanism how JAK2 contributes to CD pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Katz KD, Hollander D, Vadheim CM et al (1989) Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology 97(4):927–931

    PubMed  CAS  Google Scholar 

  2. Teahon K, Smethurst P, Levi AJ et al (1992) Intestinal permeability in patients with Crohn’s disease and their first degree relatives. Gut 33(3):320–323

    Article  PubMed  CAS  Google Scholar 

  3. Hollander D (1993) Permeability in Crohn’s disease: altered barrier functions in healthy relatives? Gastroenterology 104(6):1848–1851

    PubMed  CAS  Google Scholar 

  4. May GR, Sutherland LR, Meddings JB (1993) Is small intestinal permeability really increased in relatives of patients with Crohn’s disease? Gastroenterology 104(6):1627–1632

    PubMed  CAS  Google Scholar 

  5. Wyatt J, Vogelsang H, Hubl W et al (1993) Intestinal permeability and the prediction of relapse in Crohn’s disease. Lancet 341(8858):1437–1439

    Article  PubMed  CAS  Google Scholar 

  6. Yacyshyn BR, Meddings JB (1995) CD45RO expression on circulating CD19+ B cells in Crohn’s disease correlates with intestinal permeability. Gastroenterology 108(1):132–137

    Article  PubMed  CAS  Google Scholar 

  7. Peeters M, Geypens B, Claus D et al (1997) Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology 113(3):802–807

    Article  PubMed  CAS  Google Scholar 

  8. Soderholm JD, Olaison G, Lindberg E et al (1999) Different intestinal permeability patterns in relatives and spouses of patients with Crohn’s disease: an inherited defect in mucosal defence? Gut 44(1):96–100

    Article  PubMed  CAS  Google Scholar 

  9. Irvine EJ, Marshall JK (2000) Increased intestinal permeability precedes the onset of Crohn’s disease in a subject with familial risk. Gastroenterology 119(6):1740–1744

    Article  PubMed  CAS  Google Scholar 

  10. Beisner J, Stange EF, Wehkamp J (2010) Innate antimicrobial immunity in inflammatory bowel diseases. Expert Rev Clin Immunol 6(5):809–818

    Article  PubMed  CAS  Google Scholar 

  11. Buhner S, Buning C, Genschel J et al (2006) Genetic basis for increased intestinal permeability in families with Crohn’s disease: role of CARD15 3020insC mutation? Gut 55(3):342–347

    Article  PubMed  CAS  Google Scholar 

  12. Barrett JC, Hansoul S, Nicolae DL et al (2008) Genome-wide association defines more than 30 distinct susceptibility loci for Crohn’s disease. Nat Genet 40(8):955–962

    Article  PubMed  CAS  Google Scholar 

  13. Craddock N, Hurles ME, Cardin N et al (2010) Genome-wide association study of CNVs in 16,000 cases of eight common diseases and 3,000 shared controls. Nature 464(7289):713–720

    Article  PubMed  CAS  Google Scholar 

  14. Xavier RJ, Huett A, Rioux JD (2008) Autophagy as an important process in gut homeostasis and Crohn’s disease pathogenesis. Gut 57(6):717–720

    Article  PubMed  CAS  Google Scholar 

  15. Dignass A, Van Assche G, Lindsay JO et al (2010) ECCO The second European evidence-based consensus on the diagnosis and management of Crohn’s disease: current management. J Crohn’s Colitis 4:28–62

    Article  CAS  Google Scholar 

  16. Gasche C, Scholmerich J, Brynskov J et al (2000) A simple classification of Crohn’s disease: report of the Working Party for the World Congresses of Gastroenterology, Vienna 1998. Inflamm Bowel Dis 6(1):8–15

    Article  PubMed  CAS  Google Scholar 

  17. Buning C, Molnar T, Nagy F et al (2005) NOD2/CARD15 gene polymorphism in patients with inflammatory bowel disease: is Hungary different? World J Gastroenterol 11(3):407–411

    PubMed  Google Scholar 

  18. Buhner S, Reese I, Kuehl F et al (2004) Pseudoallergic reactions in chronic urticaria are associated with altered gastroduodenal permeability. Allergy 59(10):1118–1123

    Article  PubMed  CAS  Google Scholar 

  19. Brand S (2009) Crohn’s disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn’s disease. Gut 58(8):1152–1167

    Article  PubMed  CAS  Google Scholar 

  20. Murray PJ (2007) The JAK-STAT signaling pathway: input and output integration. J Immunol 178(5):2623–2629

    PubMed  CAS  Google Scholar 

  21. Parham C, Chirica M, Timans J et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168(11):5699–5708

    PubMed  CAS  Google Scholar 

  22. Cargill M, Schrodi SJ, Chang M et al (2007) A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am J Hum Genet 80(2):273–290

    Article  PubMed  CAS  Google Scholar 

  23. Liu Y, Helms C, Liao W et al (2008) A genome-wide association study of psoriasis and psoriatic arthritis identifies new disease loci. PLoS Genet 4(3):e1000041

    Article  PubMed  Google Scholar 

  24. Reveille JD, Sims AM, Danoy P et al (2010) Genome-wide association study of ankylosing spondylitis identifies non-MHC susceptibility loci. Nat Genet 42(2):123–127

    Article  PubMed  CAS  Google Scholar 

  25. Al-Sadi R, Ye D, Said HM et al (2010) IL-1beta-induced increase in intestinal epithelial tight junction permeability is mediated by MEKK-1 activation of canonical NF-kappaB pathway. Am J Pathol 177(5):2310–2322

    Article  PubMed  CAS  Google Scholar 

  26. Soderholm JD, Streutker C, Yang PC et al (2004) Increased epithelial uptake of protein antigens in the ileum of Crohn’s disease mediated by tumour necrosis factor alpha. Gut 53(12):1817–1824

    Article  PubMed  CAS  Google Scholar 

  27. MacDonald TT, Hutchings P, Choy MY et al (1990) Tumour necrosis factor-alpha and interferon-gamma production measured at the single cell level in normal and inflamed human intestine. Clin Exp Immunol 81(2):301–305

    Article  PubMed  CAS  Google Scholar 

  28. Ma TY, Iwamoto GK, Hoa NT et al (2004) TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. Am J Physiol Gastrointest Liver Physiol 286(3):G367–G376

    Article  PubMed  CAS  Google Scholar 

  29. Scharl M, Paul G, Weber A et al (2009) Protection of epithelial barrier function by the Crohn’s disease associated gene protein tyrosine phosphatase n2. Gastroenterology 137(6):2030–2040 e5

    Article  PubMed  CAS  Google Scholar 

  30. Salim SY, Soderholm JD (2011) Importance of disrupted intestinal barrier in inflammatory bowel diseases. Inflamm Bowel Dis 17(1):362–381

    Article  PubMed  Google Scholar 

  31. Fiocchi C (1998) Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115(1):182–205

    Article  PubMed  CAS  Google Scholar 

  32. Podolsky DK (2002) Inflammatory bowel disease. N Engl J Med 347(6):417–429

    Article  PubMed  CAS  Google Scholar 

  33. Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448(7152):427–434

    Article  PubMed  CAS  Google Scholar 

  34. Cuthbert AP, Fisher SA, Mirza MM et al (2002) The contribution of NOD2 gene mutation to the risk and site of disease in inflammatory bowel disease. Gastroenterology 122:867–874

    Article  PubMed  CAS  Google Scholar 

  35. Hampe J, Franke A, Rosenstiel P et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39(2):207–211

    Article  PubMed  CAS  Google Scholar 

  36. Wehkamp J, Stange EF (2010) Paneth’s disease. J Crohn’s Colitis 4:523–531

    Article  Google Scholar 

  37. Ferguson LR, Han DY, Fraser AG et al (2010) Genetic factors in chronic inflammation: Single nucleotide polymorphisms in the STAT-JAK pathway, susceptibility to DNA damage and Crohn’s disease in a New Zealand population. Mutat Res 690(1–2):108–115

    PubMed  CAS  Google Scholar 

  38. Sato K, Shiota M, Fukuda S et al (2009) Strong evidence of a combination polymorphism of the tyrosine kinase 2 gene and the signal transducer and activator of transcription 3 gene as a DNA-based biomarker for susceptibility to Crohn’s disease in the Japanese population. J Clin Immunol 29(6):815–825

    Article  PubMed  CAS  Google Scholar 

  39. Anderson CA, Massey DC, Barrett JC et al (2009) Investigation of Crohn’s disease risk loci in ulcerative colitis further defines their molecular relationship. Gastroenterology 136(2):523–529 e3

    Article  PubMed  Google Scholar 

  40. Franke A, Balschun T, Karlsen TH et al (2008) Replication of signals from recent studies of Crohn’s disease identifies previously unknown disease loci for ulcerative colitis. Nat Genet 40(6):713–715

    Article  PubMed  CAS  Google Scholar 

  41. McCarroll SA, Huett A, Kuballa P et al (2008) Deletion polymorphism upstream of IRGM associated with altered IRGM expression and Crohn’s disease. Nat Genet 40(9):1107–1112

    Article  PubMed  CAS  Google Scholar 

  42. Singh SB, Davis AS, Taylor GA et al (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313(5792):1438–1441

    Article  PubMed  CAS  Google Scholar 

  43. Weersma RK, Stokkers PC, Cleynen I et al (2009) Confirmation of multiple Crohn’s disease susceptibility loci in a large Dutch–Belgian cohort. Am J Gastroenterol 104(3):630–638

    Article  PubMed  CAS  Google Scholar 

  44. Latiano A, Palmieri O, Cucchiara S et al (2009) Polymorphism of the IRGM gene might predispose to fistulizing behavior in Crohn’s disease. Am J Gastroenterol 104(1):110–116

    Article  PubMed  CAS  Google Scholar 

  45. Yamazaki K, Takahashi A, Takazoe M et al (2009) Positive association of genetic variants in the upstream region of NKX2-3 with Crohn’s disease in Japanese patients. Gut 58(2):228–232

    Article  PubMed  CAS  Google Scholar 

  46. Prescott NJ, Dominy KM, Kubo M et al (2010) Independent and population-specific association of risk variants at the IRGM locus with Crohn’s disease. Hum Mol Genet 19(9):1828–1839

    Article  PubMed  CAS  Google Scholar 

  47. Büning C, Durmus T, Molnar T et al (2007) A study in three European IBD cohorts confirms that the ATG16L1 c.898A>G (p.Thr300Ala) variant is a susceptibility factor for Crohn’s disease. J Crohn’s Colitis 1:70–76

    Article  Google Scholar 

Download references

Acknowledgement

The study was supported by a grant from the Eli and Edythe Broad Foundation (to C.B., Proposal No. IBD-0164R), by a grant of the German Ministry for Education and Research (BMBF)—Competence Network “Inflammatory Bowel Disease”: 01GI0284 TP 1.17 and by the Forschungsförderung of the Charité, Universitätsmedizin Berlin. We thank all patients who participated in this evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Büning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prager, M., Büttner, J., Haas, V. et al. The JAK2 variant rs10758669 in Crohn’s disease: altering the intestinal barrier as one mechanism of action. Int J Colorectal Dis 27, 565–573 (2012). https://doi.org/10.1007/s00384-011-1345-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-011-1345-y

Keywords

Navigation