Skip to main content

Advertisement

Log in

Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations—studies in the ETU rat model

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Wnt5a is involved in the initiating and patterning morphological adaptations of gut. However, its role remained unknown during terminal hindgut development in the normal and anorectal malformation (ARM) rat embryos. This study was designed to investigate the expression pattern of Wnt5a in the terminal hindgut in ARM rat embryos.

Materials and methods

Ethylenethiourea-induced ARM model was introduced to investigate the expression pattern of Wnt5a during terminal hindgut development using immunohistochemical staining, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot analysis.

Results

Immunostaining revealed that Wnt5a expression showed space-dependent changes in the developing terminal hindgut. On embryonic day 17 (E17) in normal embryos, the Wnt5a protein was initially expressed in the mesenchyme of the terminal hindgut. From E18 to 19, the positive staining cells gradually increased. The expression was detected mainly in the circular muscle and myenteric plexus of hindgut. In the ARM embryos, on E17, the Wnt5a protein was also expressed in the hindgut. However, from E18 to 19, the positive staining cells in the middle hindgut gradually increased but in the terminal hindgut decreased. In Western blot and RT-PCR, time-dependent changes of Wnt5a protein and mRNA expression were remarkable during the terminal hindgut development in normal and ARM embryos.

Conclusion

These data implied that the downregulation of Wnt5a at the time of hindgut neuromuscular development might partly be related to the maldevelopment of terminal hindgut in ARM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. van der Putte SC (1986) Normal and abnormal development of the anorectum. J Pediatr Surg 21:434–440

    Article  PubMed  Google Scholar 

  2. Pena A, Hong A (2000) Advances in the management of anorectal malformations. Am J Surg 180:370–376

    Article  PubMed  CAS  Google Scholar 

  3. Ong NT, Beasley SW (1991) Long-term continence in patients with high and intermediate anorectal anomalies treated by sacroperineal (Stephens) rectoplasty. J Pediatr Surg 26:44–48

    Article  PubMed  CAS  Google Scholar 

  4. Holschneider AM, Koebke J, Meier-Ruge W et al (2001) Pathophysiology of chronic constipation in anorectal malformations. Long-term results and preliminary anatomical investigations. Eur J Pediatr Surg 11:305–310

    Article  PubMed  CAS  Google Scholar 

  5. Rintala RJ, Marttinen E, Virkola K et al (1997) Segmental colonic motility in patients with anorectal malformations. J Pediatr Surg 32:453–456

    Article  PubMed  CAS  Google Scholar 

  6. Capitanucci ML, Rivosecchi M, Silveric M (1996) Neurovesical dysfunction due to dysraphism in anorectal anomalies. Eur J Pediatr Surg 6:159–162

    Article  PubMed  CAS  Google Scholar 

  7. Meier-Ruge WA, Holschneider AM (2000) Histopathologic observations of anorectal abnormalities in anal atresia. Pediatr Surg Int 6:2–7

    Article  Google Scholar 

  8. Mo R, Kim JH, Kim PC et al (2001) Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159:765–774

    Article  PubMed  CAS  Google Scholar 

  9. Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127:2763–2772

    PubMed  CAS  Google Scholar 

  10. Kimmel SG, Mo R, Kim PC (2000) New mouse models of congenital anorectal malformations. J Pediatr Surg 35:227–230

    Article  PubMed  CAS  Google Scholar 

  11. Sasaki Y, Iwai N, Kimura O et al (2004) Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg 39:170–173

    Article  PubMed  Google Scholar 

  12. Fairbanks TJ, De Langhe S, Burns RC et al (2004) Fibroblast growth factor 10 (Fgf10) invalidation results in anorectal malformation in mice. J Pediatr Surg 39:360–365

    Article  PubMed  Google Scholar 

  13. Warot X, Fraulob V, Chambon P, Dollé P et al (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124:4781–4791

    PubMed  CAS  Google Scholar 

  14. Theodosiou NA, Tabin CJ (2003) Wnt signaling during development of the gastrointestinal tract. Dev Bio 259:258–271

    Article  CAS  Google Scholar 

  15. Yamaguchi TP, Bradley A, McMahon AP et al (1999) A Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126:1211

    PubMed  CAS  Google Scholar 

  16. Tai CC, Sala FG, Ford HR et al (2009) Wnt5a knock-out mouse as a new model of anorectal malformation. J Surg Res 156:278–282

    Article  PubMed  CAS  Google Scholar 

  17. Bai Y, Chen H, Wang W et al (2004) Normal and abnormal embryonic development of the anorectum in rats. J Pediatr Surg 39:587–590

    Article  PubMed  Google Scholar 

  18. Mandhan P, Quan QB, Beasley S et al (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in ethylenethiourea-exposed fetal rats. J Pediatr Surg 41:2041–2045

    Article  PubMed  Google Scholar 

  19. Rintala RJ, Pakarinen MP (2008) Imperforate anus: long- and short-term outcome. Semin Pediatr Surg 17:79–89

    Article  PubMed  Google Scholar 

  20. Kluth D (2010) Embryology of anorectal malformations. Semin Pediatr Surg 19:201–208

    Article  PubMed  Google Scholar 

  21. Levitt MA, Peña A (2007) Anorectal malformations. Orphanet J Rare Dis 26:2–33

    Google Scholar 

  22. Zhang SW, Bai YZ, Zhang SC et al (2008) Embryonic development of the striated muscle complex in rats with anorectal malformations. J Pediatr Surg 43:1452–1458

    Article  PubMed  Google Scholar 

  23. Crosnier C, Vargesson N, Gschmeissner S et al (2005) Delta–Notch signalling controls commitment to a secretory fate in the zebrafish intestine. Development 132:1093–1104

    Article  PubMed  CAS  Google Scholar 

  24. Roberts DJ (2000) Molecular mechanisms of development of the gastro-intestinal tract. Dev Dyn 219:109–120

    Article  PubMed  CAS  Google Scholar 

  25. Spence JR, Lange AW, Lin SC et al (2009) Sox17 regulates organ lineage segregation of ventral foregut progenitor cells. Dev Cell 17:62–74

    Article  PubMed  CAS  Google Scholar 

  26. Nakamura T, Tsuchiya K, Watanabe M (2007) Crosstalk between Wnt and Notch signaling in intestinal epithelial cell fate decision. J Gastroenterol 42:705–710

    Article  PubMed  CAS  Google Scholar 

  27. van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  PubMed  Google Scholar 

  28. Peterson RT (2006) A noncanonical path to mechanism of action. Chem Biol 13:924–926

    Article  PubMed  CAS  Google Scholar 

  29. Surmann-Schmitt C, Widmann N, Dietz U (2009) Wif-1 is expressed at cartilage–mesenchyme interfaces and impedes Wnt3a-mediated inhibition of chondrogenesis. J Cell Sci 122:3627–3637

    Article  PubMed  CAS  Google Scholar 

  30. Nemeth MJ, Topol L, Anderson SM et al (2007) Wnt5a inhibits canonical Wnt signaling in hematopoietic stem cells and enhances repopulation. Proc Natl Acad Sci USA 104:15436–15441

    Article  PubMed  CAS  Google Scholar 

  31. Roman-Gomez J, Jimenez-Velasco A, Cordeu L et al (2007) WNT5A, a putative tumour suppressor of lymphoid malignancies, is inactivated by aberrant methylation in acute lymphoblastic leukaemia. Eur J Cancer 43:2736–2746

    Article  PubMed  CAS  Google Scholar 

  32. Cervantes S, Yamaguchi TP, Hebrok M (2009) Wnt5a is essential for intestinal elongation in mice. Dev Biol 326:285–294

    Article  PubMed  CAS  Google Scholar 

  33. Lange C, Mix E, Rateitschak K et al (2006) Wnt signal pathways and neural stem cell differentiation. Neurodegener Dis 3:76–86

    Article  PubMed  CAS  Google Scholar 

  34. Yu JM, Kim JH, Song GS et al (2006) Increase in proliferation and differentiation of neural progenitor cells isolated from postnatal and adult mice brain by Wnt-3a and Wnt-5a. Mol Cell Biochem 288:17–28

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (grant nos. 30801199 and 30872704), Province Science and Technology in the Liaoning Offends Pass Item (grant no. 2007225005-3), Project of Key Laboratory of the Education Department of Liaoning Province (grant no. LS2010171), and Outstanding Scientific Research of Shengjing Hospital of China Medical University (200811).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weilin Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jia, H., Chen, Q., Zhang, T. et al. Wnt5a expression in the hindgut of fetal rats with chemically induced anorectal malformations—studies in the ETU rat model. Int J Colorectal Dis 26, 493–499 (2011). https://doi.org/10.1007/s00384-010-1125-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-010-1125-0

Keywords

Navigation