Skip to main content

Advertisement

Log in

Spatiotemporal pattern analysis of transcription factor 4 in the developing anorectum of the rat embryo with anorectal malformations

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

As a member of the transcription factors family, transcription factor 4(Tcf4) is known to influence gene expression in endodermally derived tissues including lung, liver, pancreas, stomach, and intestine. However, it remained unknown if this capability is active during anorectal development in the normal and anorectal malformations (ARM) rat embryos.

Materials and methods

In this study, ethylenethiourea (ETU)-induced ARM model was introduced to investigate the expression pattern of Tcf4 during anorectal development using immunohistochemical staining, reverse transcriptase polymerase chain reaction (RT-PCR), and Western blot analysis.

Results

Immunostaining revealed that Tcf4 expression showed space-dependent changes in the developing anorectum: in normal embryos, Tcf4 protein is initially expressed in the dorsal endoderm of urorectal septum (URS) and hindgut on embryonic day 13 (E13). Additionally, separate expression domain develops intensively on the dorsal CM on E14. On E15, positive cells are then detected in the fused tissue of URS, and prominently in the anal membrane. In the ARM embryos, however, the epithelium of the cloaca, URS, and anorectum was negative or faint for Tcf4. In Western blot and RT-PCR, time-dependent changes of Tcf4 protein and mRNA expression were remarkable during the anorectal development: on E14, E14.5, and E15, the expression level reached the peak; after E16, Tcf4 expression gradually decreased. In contrast, in ARM embryos, spatiotemporal expression of Tcf4 was imbalanced during the anorectal morphogenesis from E13 to E16.

Conclusions

These data implied that the downregulation of Tcf4 at the time of cloacal separation into rectum and urethra might be related to the development of ARM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. van der Putte SC (1986) Normal and abnormal development of the anorectum. J Pediatr Surg 21:434–440

    Article  PubMed  Google Scholar 

  2. Peña A, Guardino K, Torres R et al (1998) Bowel management for fecal incontinence in patients with anorectal malformations. J Pediatr Surg 33:133–137

    Article  PubMed  Google Scholar 

  3. Bai YZ, Yuan Z, Wang W et al (2000) Quality of life for children with fecal incontinence after surgically corrected anorectal malformation. J Pediatr Surg 35:462–464

    Article  PubMed  CAS  Google Scholar 

  4. Levitt MA, Peña A (2005) Outcomes from the correction of anorectal malformations. Curr Opin Pediatr 17:394–401

    Article  PubMed  Google Scholar 

  5. Theodosiou NA, Tabin CJ (2003) Wnt signaling during development of the gastrointestinal tract. Dev Bio 259:258–271

    Article  CAS  Google Scholar 

  6. Bienz M, Clevers H (2000) Linking colorectal cancer to Wnt signaling. Cell 103:311–320

    Article  PubMed  CAS  Google Scholar 

  7. He X (2003) A wnt–wnt situation. Dev Cell 4:791–797

    Article  PubMed  CAS  Google Scholar 

  8. Gregorieff A, Grosschedl R, Clevers H (2004) Hindgut defects and transformation of the gastrointestinal tract in Tcf4−/−Tcf1−/− embryos. EMBO J 23:1825–1833

    Article  PubMed  CAS  Google Scholar 

  9. Bai Y, Chen H, Wang W et al (2004) Normal and abnormal embryonic development of the anorectum in rats. J Pediatr Surg 39:587–590

    Article  PubMed  Google Scholar 

  10. Qi BQ, Beasley SW, Frizelle FA (2002) Clarification of the processes that lead to anorectal malformations in the ETU-induced rat model of imperforate anus. J Pediatr Surg 37:1305–1312

    Article  PubMed  Google Scholar 

  11. Mandhan P, Quan QB, Beasley S et al (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in ethylenethiourea-exposed fetal rats. J Pediatr Surg 41:2041–2045

    Article  PubMed  Google Scholar 

  12. Korinek V, Barker N, Clevers H et al (1998) Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Gene 19:379–383

    Article  CAS  Google Scholar 

  13. Shiina H, Igawa M, Dahiya R et al (2003) The human T-cell factor-4 gene splicing isoforms, Wnt signal pathway, and apoptosis in renal cell carcinoma. Clin Cancer Res 9:2121–213

    PubMed  CAS  Google Scholar 

  14. Mo R, Kim JH, Kim PC et al (2001) Anorectal malformations caused by defects in sonic hedgehog signaling. Am J Pathol 159:765–774

    PubMed  CAS  Google Scholar 

  15. Ramalho-Santos M, Melton DA, McMahon AP (2000) Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 127:2763–2772

    PubMed  CAS  Google Scholar 

  16. Kimmel SG, Mo R, Kim PC (2000) New mouse models of congenital anorectal malformations. J Pediatr Surg 35:227–230

    Article  PubMed  CAS  Google Scholar 

  17. Sasaki Y, Iwai N, Kimura O et al (2004) Sonic hedgehog and bone morphogenetic protein 4 expressions in the hindgut region of murine embryos with anorectal malformations. J Pediatr Surg 39:170–173

    Article  PubMed  Google Scholar 

  18. Mandhan P, Quan QB, Beasley S et al (2006) Sonic hedgehog, BMP4, and Hox genes in the development of anorectal malformations in ethylenethiourea-exposed fetal rats. J Pediatr Surg 41:2041–2045

    Article  PubMed  Google Scholar 

  19. Fairbanks TJ, De Langhe S, Burns RC et al (2004) Fibroblast growth factor 10 (Fgf10) invalidation results in anorectal malformation in mice. J Pediatr Surg 39:360–365

    Article  PubMed  Google Scholar 

  20. Warot X, Fraulob V, Chambon P, Dollé P et al (1997) Gene dosage-dependent effects of the Hoxa-13 and Hoxd-13 mutations on morphogenesis of the terminal parts of the digestive and urogenital tracts. Development 124:4781–4791

    PubMed  CAS  Google Scholar 

  21. Dravis C, Yokoyama N, Henkemeyer M et al (2004) Bidirectional signaling mediated by ephrin-B2 and EphB2 controls urorectal development. Dev Biol 271:272–290

    Article  PubMed  CAS  Google Scholar 

  22. Brinkmeier ML, Potok MA, Camper SA et al (2007) TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol 311:396–407

    Article  PubMed  CAS  Google Scholar 

  23. Batlle E, Henderson JT, Clevers H et al (2002) Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 111:251–263

    Article  PubMed  CAS  Google Scholar 

  24. Clevers H, Batlle E (2006) EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 66:2–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (grant no. 30400473) and Project supported by the Key Laboratory of Education Bureau of Liaoning Province, China (grant no. 2008s234).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zuo Bai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, T., Bai, Y.Z., Wang, D.J. et al. Spatiotemporal pattern analysis of transcription factor 4 in the developing anorectum of the rat embryo with anorectal malformations. Int J Colorectal Dis 24, 1039–1047 (2009). https://doi.org/10.1007/s00384-009-0705-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-009-0705-3

Keywords

Navigation