Skip to main content

Advertisement

Log in

Interleukin-13 exerts autocrine growth-promoting effects on human pancreatic cancer, and its expression correlates with a propensity for lymph node metastases

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Background and aims

Interleukin-13 (IL-13) is an anti-inflammatory cytokine produced in cells of hematopoetic origin. It is not known whether pancreatic cancer cells produce IL-13 or whether IL-13 can modulate pancreatic cancer cell growth and influence the frequency of lymph node metastases.

Materials and methods

Cell growth and signaling were analyzed by cell counting, colorimetric proliferation assays, fluorescent-activated cell sorting, and in vitro kinase activity assays. IL-13 expression and secretion were determined by Northern blot analysis and enzyme-linked immunosorbent assay, respectively. Localization of IL-13 and its transmembrane receptor (IL-4R) in primary pancreatic ductal adenocarcinoma (PDAC) was characterized by immunohistochemistry.

Results

IL-13 enhanced the growth of ASPC-1, CAPAN-1, and COLO-357 cells. This was associated with enhanced p44/42 mitogen-activated protein kinase (MAPK) phoshorylation. In contrast to p44/42 MAPK, phosphatidylinositol 3-kinase activity was also induced in IL-13-unresponsive MIA PaCa-2, PANC-1, and T3M4 cells. All cells expressed and secreted IL-13. Neutralizing IL-13 antibodies inhibited the growth of ASPC-1 and CAPAN-1 cells. Immunohistochemical analysis of resected primary ductal adenocarcinoma specimens revealed high levels of IL-13 in 30 of 70 cases and its transmembrane receptor (IL-4R) in 28 of 70 cases, respectively. Fifteen of 16 specimens (94%) exhibiting high IL-13 and IL-4R coexpression had lymph node metastases, while only 30 of the remaining 54 samples (56%) had positive lymph nodes (p = 0.0134).

Conclusion

IL-13 can act as an autocrine growth factor in PDAC. Endogenous expression of IL-13 in conjunction with IL-4R in the cancer cells seems to facilitate lymph node metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Minty A, Chalon P, Derocq JM, Dumont X, Guillemot JC, Kaghad M, Labit C, Leplatois P, Liauzun P, Miloux B, Minty C, Casellas P, Loison G, Lupker J, Shire D, Ferrara P, Caput D (1993) Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 362:248–250

    Article  PubMed  CAS  Google Scholar 

  2. McKenzie AN, Culpepper JA, de Waal Malefyt R, Briere F, Punnonen J, Aversa G, Sato A, Dang W, Cocks BG, Menon S, De Vries JE, Banchereau J, Zurawski G (1993) Interleukin 13, a T-cell-derived cytokine that regulates human monocyte and B-cell function. Proc Natl Acad Sci USA 90:3735–3739

    Article  PubMed  CAS  Google Scholar 

  3. Zurawski G, de Vries JE (1994) Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol Today 15:19–26

    Article  PubMed  CAS  Google Scholar 

  4. Lind M, Deleuran B, Yssel H, Fink-Eriksen E, Thestrup-Pedersen K (1995) IL-4 and IL-13, but not IL-10, are chemotactic factors for human osteoblasts. Cytokine 7:78–82

    Article  PubMed  CAS  Google Scholar 

  5. David M, Ford D, Bertoglio J, Maizel AL, Pierre J (2001) Induction of the IL-13 receptor alpha2-chain by IL-4 and IL-13 in human keratinocytes: involvement of STAT6, ERK and p38 MAPK pathways. Oncogene 20:6660–6668

    Article  PubMed  CAS  Google Scholar 

  6. Sironi M, Sciacca FL, Matteucci C, Conni M, Vecchi A, Bernasconi S, Minty A, Caput D, Ferrara P, Colotta F (1994) Regulation of endothelial and mesothelial cell function by interleukin-13: selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood 84:1913–1921

    PubMed  CAS  Google Scholar 

  7. Kanai T, Watanabe M, Hayashi A, Nakazawa A, Yajima T, Okazawa A, Yamazaki M, Ishii H, Hibi T (2000) Regulatory effect of interleukin-4 and interleukin-13 on colon cancer cell adhesion. Br J Cancer 82:1717–1723

    Article  PubMed  CAS  Google Scholar 

  8. Aman MJ, Tayebi N, Obiri NI, Puri RK, Modi WS, Leonard WJ (1996) cDNA cloning and characterization of the human interleukin 13 receptor alpha chain. J Biol Chem 271:29265–29270

    Article  PubMed  CAS  Google Scholar 

  9. Idzerda RL, March CJ, Mosley B, Lyman SD, Vanden Bos T, Gimpel SD, Din WS, Grabstein KH, Widmer MB, Park LS (1990) Human interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J Exp Med 171:861–873

    Article  PubMed  CAS  Google Scholar 

  10. Caput D, Laurent P, Kaghad M, Lelias JM, Lefort S, Vita N, Ferrara P (1996) Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor alpha chain. J Biol Chem 271:16921–16926

    Article  PubMed  CAS  Google Scholar 

  11. Jiang H, Harris MB, Rothman P (2000) IL-4/IL-13 signaling beyond JAK/STAT. J Allergy Clin Immunol 105:1063–1070

    Article  PubMed  CAS  Google Scholar 

  12. White MF, Yenush L (1998) The IRS-signaling system: a network of docking proteins that mediate insulin and cytokine action. Curr Top Microbiol Immunol 228:179–208

    PubMed  CAS  Google Scholar 

  13. Kornmann M, Beger HG, Link KH (2003) Chemosensitivity testing and test-directed chemotherapy in human pancreatic cancer. Recent Results Cancer Res 161:180–195

    PubMed  CAS  Google Scholar 

  14. Korc M (1998) Role of growth factors in pancreatic cancer. Surg Oncol Clin N Am 7:25–41

    PubMed  CAS  Google Scholar 

  15. Kornmann M, Maruyama H, Bergmann U, Tangvoranuntakul P, Beger HG, White MF, Korc M (1998) Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res 58:4250–4254

    PubMed  CAS  Google Scholar 

  16. Bergmann U, Funatomi H, Kornmann M, Beger HG, Korc M (1996) Increased expression of insulin receptor substrate-1 in human pancreatic cancer. Biochem Biophys Res Commun 220:886–890

    Article  PubMed  CAS  Google Scholar 

  17. Basso D, Plebani M (2000) Cytokines and exocrine pancreatic cancer: is there a link? JOP 1:19–23

    PubMed  CAS  Google Scholar 

  18. Hedin KE (2002) Chemokines: new, key players in the pathobiology of pancreatic cancer. Int J Gastrointest Cancer 31:23–29

    Article  PubMed  CAS  Google Scholar 

  19. Prokopchuk O, Liu Y, Henne-Bruns D, Kornmann M (2005) Interleukin-4 enhances proliferation of human pancreatic cancer cells: evidence for autocrine and paracrine actions. Br J Cancer 92:921–928

    Article  PubMed  CAS  Google Scholar 

  20. Kornmann M, Kleeff J, Debinski W, Korc M (1999) Pancreatic cancer cells express interleukin-13 and -4 receptors, and their growth is inhibited by Pseudomonas exotoxin coupled to interleukin-13 and -4. Anticancer Res 19:125–131

    PubMed  CAS  Google Scholar 

  21. Liu Z, Neiss N, Zhou S, Henne-Bruns D, Korc M, Bachem M, Kornmann M (2007) Identification of a fibroblast growth factor receptor 1 splice variant that inhibits pancreatic cancer cell growth. Cancer Res 67:2712–2719

    Article  PubMed  CAS  Google Scholar 

  22. Formentini A, Sander S, Denzer S, Straeter J, Henne-Bruns D, Kornmann M (2007) Thymidylate synthase expression in resectable and unresectable pancreatic cancer: role as predictive or prognostic marker? Int J Colorectal Dis 22:49–55

    Article  PubMed  Google Scholar 

  23. Pawankar RU, Okuda M, Hasegawa S, Suzuki K, Yssel H, Okubo K, Okumura K, Ra C (1995) Interleukin-13 expression in the nasal mucosa of perennial allergic rhinitis. Am J Respir Crit Care Med 152:2059–2067

    PubMed  CAS  Google Scholar 

  24. Ohshima K, Akaiwa M, Umeshita R, Suzumiya J, Izuhara K, Kikuchi M (2001) Interleukin-13 and interleukin-13 receptor in Hodgkin’s disease: possible autocrine mechanism and involvement in fibrosis. Histopathology 38:368–375

    Article  PubMed  CAS  Google Scholar 

  25. Skinnider BF, Kapp U, Mak TW (2001) Interleukin 13: a growth factor in Hodgkin lymphoma. Int Arch Allergy Immunol 126:267–276

    Article  PubMed  CAS  Google Scholar 

  26. Maini A, Hillman G, Haas GP, Wang CY, Montecillo E, Hamzavi F, Pontes JE, Leland P, Pastan I, Debinski W, Puri RK (1997) Interleukin-13 receptors on human prostate carcinoma cell lines represent a novel target for a chimeric protein composed of IL-13 and a mutated form of Pseudomonas exotoxin. J Urol 158:948–953

    Article  PubMed  CAS  Google Scholar 

  27. Wright K, Kolios G, Westwick J, Ward SG (1999) Cytokine-induced apoptosis in epithelial HT-29 cells is independent of nitric oxide formation. Evidence for an interleukin-13-driven phosphatidylinositol 3-kinase-dependent survival mechanism. J Biol Chem 274:17193–17201

    Article  PubMed  CAS  Google Scholar 

  28. Arico S, Petiot A, Bauvy C, Dubbelhuis PF, Meijer AJ, Codogno P, Ogier-Denis E (2001) The tumor suppressor PTEN positively regulates macroautophagy by inhibiting the phosphatidylinositol 3-kinase/protein kinase B pathway. J Biol Chem 276:35243–35246

    Article  PubMed  CAS  Google Scholar 

  29. Serve H, Oelmann E, Herweg A, Oberberg D, Serve S, Reufi B, Mucke C, Minty A, Thiel E, Berdel WE (1996) Inhibition of proliferation and clonal growth of human breast cancer cells by interleukin 13. Cancer Res 56:3583–3588

    PubMed  CAS  Google Scholar 

  30. Blais Y, Gingras S, Haagensen DE, Labrie F, Simard J (1996) Interleukin-4 and interleukin-13 inhibit estrogen-induced breast cancer cell proliferation and stimulate GCDFP-15 expression in human breast cancer cells. Mol Cell Endocrinol 121:11–18

    Article  PubMed  CAS  Google Scholar 

  31. Obiri NI, Husain SR, Debinski W, Puri RK (1996) Interleukin 13 inhibits growth of human renal cell carcinoma cells independently of the p140 interleukin 4 receptor chain. Clin Cancer Res 2:1743–1749

    PubMed  CAS  Google Scholar 

  32. Ihle JN (1996) Signaling by the cytokine receptor superfamily in normal and transformed hematopoietic cells. Adv Cancer Res 68:23–65

    Article  PubMed  CAS  Google Scholar 

  33. Rodriguez-Viciana P, Warne PH, Khwaja A, Marte BM, Pappin D, Das P, Waterfield MD, Ridley A, Downward J (1997) Role of phosphoinositide 3-OH kinase in cell transformation and control of the actin cytoskeleton by Ras. Cell 89:457–467

    Article  PubMed  CAS  Google Scholar 

  34. Curnock AP, Logan MK, Ward SG (2002) Chemokine signalling: pivoting around multiple phosphoinositide 3-kinases. Immunology 105:125–136

    Article  PubMed  CAS  Google Scholar 

  35. Wang LM, Michieli P, Lie WR, Liu F, Lee CC, Minty A, Sun XJ, Levine A, White MF, Pierce JH (1995) The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction. Blood 86:4218–4227

    PubMed  CAS  Google Scholar 

  36. Keegan AD, Nelms K, White M, Wang LM, Pierce JH, Paul WE (1994) An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell 76:811–820

    Article  PubMed  CAS  Google Scholar 

  37. Chiaramonte MG, Donaldson DD, Cheever AW, Wynn TA (1999) An IL-13 inhibitor blocks the development of hepatic fibrosis during a T-helper type 2-dominated inflammatory response. J Clin Invest 104:777–785

    Article  PubMed  CAS  Google Scholar 

  38. Zhu Z, Homer RJ, Wang Z, Chen Q, Geba GP, Wang J, Zhang Y, Elias JA (1999) Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J Clin Invest 103:779–788

    Article  PubMed  CAS  Google Scholar 

  39. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD, Carbone DP, Paul WE, Berzofsky JA (2000) NKT cell-mediated repression of tumor immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 1:515–520

    Article  PubMed  CAS  Google Scholar 

  40. Ostrand-Rosenberg S, Clements VK, Terabe M, Park JM, Berzofsky JA, Dissanayake SK (2002) Resistance to metastatic disease in STAT6-deficient mice requires hemopoietic and nonhemopoietic cells and is IFN-gamma dependent. J Immunol 169:5796–5804

    PubMed  CAS  Google Scholar 

  41. Kawakami K, Kawakami M, Husain SR, Puri RK (2003) Potent antitumor activity of IL-13 cytotoxin in human pancreatic tumors engineered to express IL-13 receptor alpha2 chain in vivo. Gene Ther 10:1116–1128

    Article  PubMed  CAS  Google Scholar 

  42. Oshima Y, Puri RK (2001) A novel interleukin 13 (IL-13) antagonist that blocks the biological activity of human IL-13 in immune and nonimmune cells. FASEB J 15:1469–1471

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Ph.D. grant from the IZKF Ulm to O. Prokopschuk and Public Health Service Grant CA-75059 awarded by the National Cancer Institute to Mu. K. We thank I. Schneider for performing parts of the cell growth assays, FACS, and immunoblot analysis, E. Schmidt for assisting in IL-13 immunohistochemistry, R.S. Metzgar (Duke University, Durham, NC, USA) for the generous gift of the human pancreatic cancer cell lines COLO-357 and T3M4, and M. Buchholz for performing densitometric analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marko Kornmann.

Additional information

Andrea Formentini and Olga Prokopchuk have equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Formentini, A., Prokopchuk, O., Sträter, J. et al. Interleukin-13 exerts autocrine growth-promoting effects on human pancreatic cancer, and its expression correlates with a propensity for lymph node metastases. Int J Colorectal Dis 24, 57–67 (2009). https://doi.org/10.1007/s00384-008-0550-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-008-0550-9

Keywords

Navigation