Skip to main content


Log in

Ile105Val GSTP1 polymorphism and susceptibility to colorectal carcinoma in Bulgarian population

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript


Background and aims

Etiologically, the sporadic colorectal cancer (CRC) is a complex and multifactorial disease that is linked to both exogenic and endogenic factors. Accumulating evidence indicates that susceptibility to cancers, including CRC, is mediated by genetically determined differences in the effectiveness of detoxification of potential carcinogens. A member of the glutathione-S-transferase (GST) family, GSTP1, is an important candidate for involvement in susceptibility to carcinogen-associated CRC. An A→G transition in exon 5 of the GSTP1 gene resulting in Ile105Val amino acid substitution has been identified. This change leads to alteration in catalytic efficiency of variant enzyme. The aim of the current study was to evaluate the influence of Ile105Val GSTP1 polymorphism on susceptibility to CRC.

Materials and methods

The GSTP1 genotyping was conducted in a case-control study of 80 ethnic Bulgarian CRC patients and 126 unaffected controls using polymerase chain reaction restriction fragment length polymorphism method.


A statistically significant case-control difference in genotype frequencies was observed: 0.69 vs 0.54 for Ile/Ile, 0.22 vs 0.39 for Ile/Val, and 0.09 vs 0.07 for Val/Val (p = 0.049). The odds ratio (OR) for Val/Val was close to 1 (0.96, 95%CI: 0.35–2.66, p = 0.942), whereas the OR for Ile/Val was significantly lower, 0.45 (95%CI: 0.24–0.86, p = 0.016), compared to the referent Ile/Ile genotype. Although a prevalence of the GSTP1 variant allele-containing genotypes (Ile/Val or Val/Val) was found in controls than in patients (OR = 0.53, 95%CI: 0.30–0.96, p = 0.035), the allele frequencies did not show significant difference between cases and controls (p = 0.127).


Based on the obtained protective effect of Ile/Val GSTP1 genotype, we could suggest that Ile105Val GSTP1 polymorphism may play some role in susceptibility to CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


  1. Greenlee RT, Murray T, Bolden S, Wingo PA (2000) CA Cancer J Clin 50(1):7–33

    PubMed  CAS  Google Scholar 

  2. Finnish Cancer Registry (1997) Finish cancer registry. In: Cancer incidence in Finland 1995, Helsinki, pp 1–38

  3. Danon Sh, Valerianova Zdr, Ivanova Tzv (2003) Cancer incidence in Bulgaria, 2000, National Oncological Centre, Bulgarian National Cancer Registry, vol 9, pp 9–62

  4. Perera FP (1997) Environment and cancer: who are susceptible? Science 278(5340):1068–1073

    Article  PubMed  CAS  Google Scholar 

  5. Potter JD (1999) Colorectal cancer: molecules and populations. J Natl Cancer Inst 91(11):916–932

    Article  PubMed  CAS  Google Scholar 

  6. McIlwain CC, Townsend DM, Tew KD (2006) Glutathione S-transferase polymorphisms: cancer incidence and therapy. Oncogene 5(11):1639–1648

    Article  CAS  Google Scholar 

  7. Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  PubMed  CAS  Google Scholar 

  8. Raha A, Tew KD (1996) Glutathione S-transferases. Cancer Treat Res 87:83–122

    PubMed  CAS  Google Scholar 

  9. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360(Pt 1):1–16

    Article  PubMed  CAS  Google Scholar 

  10. Tew KD, Ronai Z (1999) GST function in drug and stress response. Drug Resist Updat 2(3):143–147

    Article  PubMed  CAS  Google Scholar 

  11. Ali-Osman F, Akande O, Antoun G, Mao JX, Buolamwini J (1997) Molecular cloning, characterization, and expression in Escherichia coli of full-length cDNAs of three human glutathione S-transferase Pi gene variants. Evidence for differential catalytic activity of the encoded proteins. J Biol Chem 272(15):10004–10012

    Article  PubMed  CAS  Google Scholar 

  12. Whyatt RM, Perera FP, Jedrychowski W, Santella RM, Garte S, Bell DA (2000) Association between polycyclic aromatic hydrocarbon–DNA adduct levels in maternal and newborn white blood cells and glutathione S-transferase P1 and CYP1A1 polymorphisms. Cancer Epidemiol Biomark Prev 9(2):207–212

    CAS  Google Scholar 

  13. Dogru-Abbasoglu S, Mutlu-Turkoglu U, Turkoglu S, Erbil Y, Barbaros U, Uysal M, Aykac-Toker G (2002) Glutathione S-transferase-pi in malignant tissues and plasma of human colorectal and gastric cancers. J Cancer Res Clin Oncol 128(2):91–95

    Article  PubMed  CAS  Google Scholar 

  14. Ranganathan S, Tew KD (1991) Immunohistochemical localization of glutathione S-transferases alpha, mu, and pi in normal tissue and carcinomas from human colon. Carcinogenesis 12(12):2383–2387

    Article  PubMed  CAS  Google Scholar 

  15. Adler V, Yin Z, Fuchs SY, Benezra M, Rosario L, Tew KD, Pincus MR, Sardana M, Henderson CJ, Wolf CR, Davis RJ, Ronai Z (1999) Regulation of JNK signaling by GSTp. EMBO J 18(5):1321–1334

    Article  PubMed  CAS  Google Scholar 

  16. Townsend DM, Findlay VL, Tew KD (2005) Glutathione S-transferases as regulators of kinase pathways and anticancer drug targets. Methods Enzymol 401:287–307

    PubMed  CAS  Google Scholar 

  17. Townsend DM, Tew KD (2003) The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene 22(47):7369–7375

    Article  PubMed  CAS  Google Scholar 

  18. Board PG, Webb GC, Coggan M (1989) Isolation of a cDNA clone and localization of the human glutathione S-transferase 3 genes to chromosome bands 11q13 and 12q13-14. Ann Hum Genet 53 (Pt 3):205–213

    PubMed  CAS  Google Scholar 

  19. Watson MA, Stewart RK, Smith GB, Massey TE, Bell DA (1998) Human glutathione S-transferase P1 polymorphisms: relationship to lung tissue enzyme activity and population frequency distribution. Carcinogenesis 19(2):275–280

    Article  PubMed  CAS  Google Scholar 

  20. Harries LW, Stubbins MJ, Forman D, Howard GC, Wolf CR (1997) Identification of genetic polymorphisms at the glutathione S-transferase Pi locus and association with susceptibility to bladder, testicular and prostate cancer. Carcinogenesis 18(4):641–644

    Article  PubMed  CAS  Google Scholar 

  21. Welfare M, Monesola Adeokun A, Bassendine MF, Daly AK (1999) Polymorphisms in GSTP1, GSTM1, and GSTT1 and susceptibility to colorectal cancer. Cancer Epidemiol Biomark Prev 8(4 Pt 1):289–292

    CAS  Google Scholar 

  22. Kiyohara C (2000) Genetic polymorphism of enzymes involved in xenobiotic metabolism and the risk of colorectal cancer. J Epidemiol 10(5):349–360

    PubMed  CAS  Google Scholar 

  23. Grubben MJ, Nagengast FM, Katan MB, Peters WH (2001) The glutathione biotransformation system and colorectal cancer risk in humans. Scand J Gastroenterol Suppl 234:68–76

    Article  PubMed  Google Scholar 

  24. Loktionov A, Watson MA, Gunter M, Stebbings WS, Speakman CT, Bingham SA (2001) Glutathione-S-transferase gene polymorphisms in colorectal cancer patients: interaction between GSTM1 and GSTM3 allele variants as a risk-modulating factor. Carcinogenesis 22(7):1053–1060

    Article  PubMed  CAS  Google Scholar 

  25. Seow A, Yuan JM, Sun CL, Van Den Berg D, Lee HP, Yu MC (2002) Dietary isothiocyanates, glutathione S-transferase polymorphisms and colorectal cancer risk in the Singapore Chinese Health Study. Carcinogenesis 23(12):2055–2061

    Article  PubMed  CAS  Google Scholar 

  26. Sun XF, Ahmadi A, Arbman G, Wallin A, Asklid D, Zhang H (2005) Polymorphisms in sulfotransferase 1A1 and glutathione S-transferase P1 genes in relation to colorectal cancer risk and patients’ survival. World J Gastroenterol 11(43):6875–6879

    PubMed  CAS  Google Scholar 

  27. Ates NA, Tamer L, Ates C, Ercan B, Elipek T, Ocal K, Camdeviren H (2005) Glutathione S-transferase M1, T1, P1 genotypes and risk for development of colorectal cancer. Biochem Genet 43(3–4):149–163

    PubMed  CAS  Google Scholar 

  28. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular clone, a laboratory manual. Cold spring Harbor Laboratories press, Cold spring Harbor, NY

    Google Scholar 

  29. Ye Z, Parry JM (2003) A meta-analysis of 20 case-control studies of the glutathione S-transferase M1 (GSTM1) status and colorectal cancer risk. Med Sci Monit 9(10):SR83–SR91

    PubMed  CAS  Google Scholar 

  30. Anders MW (2004) Glutathione-dependent bioactivation of haloalkanes and haloalkenes. Drug Metab Rev (3–4):583–594

    Article  CAS  Google Scholar 

  31. Anders MW, Dekant W, Vamvakas S (1992) Glutathione-dependent toxicity. Xenobiotica 22(9–10):1135–1145

    Article  PubMed  CAS  Google Scholar 

  32. Bostrom CE, Gerde P, Hanberg A, Jernstrom B, Johansson C, Kyrklund T, Rannug A, Tornqvist M, Victorin K, Westerholm R (2002) Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect 110 (Suppl 3):451–488

    PubMed  CAS  Google Scholar 

  33. Andonova IE, Sarueva RB, Horvath AD, Simeonov VA, Dimitrov PS, Petropoulos EA, Ganev VS (2004) Balkan endemic nephropathy and genetic variants of glutathione S-transferases. J Nephrol 17(3):390–398

    PubMed  CAS  Google Scholar 

  34. Toncheva DI, Von Ahsen N, Atanasova SY, Dimitrov TG, Armstrong VW, Oellerich M (2004) Identification of NQO1 and GSTs genotype frequencies in Bulgarian patients with Balkan endemic nephropathy. J Nephrol 17(3):384–389

    PubMed  CAS  Google Scholar 

  35. Mitrunen K, Jourenkova N, Kataja V, Eskelinen M, Kosma VM, Benhamou S, Vainio H, Uusitupa M, Hirvonen A (2001) Glutathione S-transferase M1, M3, P1, and T1 genetic polymorphisms and susceptibility to breast cancer. Cancer Epidemiol Biomark Prev 10(3):229–236

    CAS  Google Scholar 

  36. Coles B, Yang M, Lang NP, Kadlubar FF (2000) Expression of hGSTP1 alleles in human lung and catalytic activity of the native protein variants towards 1-chloro-2,4-dinitrobenzene, 4-vinylpyridine and (+)-anti benzo[a]pyrene-7,8-diol-9,10-oxide.Cancer Lett 156(2):167–175

    Article  PubMed  CAS  Google Scholar 

  37. Sundberg K, Johansson AS, Stenberg G, Widersten M, Seidel A, Mannervik B, Jernstrom B (1998) Differences in the catalytic efficiencies of allelic variants of glutathione transferase P1-1 towards carcinogenic diol epoxides of polycyclic aromatic hydrocarbons. Carcinogenesis 19(3):433–436

    Article  PubMed  CAS  Google Scholar 

  38. Sundberg K, Seidel A, Mannervik B, Jernstrom B (1998) Detoxication of carcinogenic fjord-region diol epoxides of polycyclic aromatic hydrocarbons by glutathione transferase P1-1 variants and glutathione. FEBS Lett 438(3):206–210

    Article  PubMed  CAS  Google Scholar 

Download references


This work was performed with the financial support by the National Science Fund of Ministry of Education and Science of Bulgaria for the project VU-L-05/10.06.05.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tatyana Vlaykova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vlaykova, T., Miteva, L., Gulubova, M. et al. Ile105Val GSTP1 polymorphism and susceptibility to colorectal carcinoma in Bulgarian population. Int J Colorectal Dis 22, 1209–1215 (2007).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: