Skip to main content

Advertisement

Log in

Systematic review of the mechanism and assessment of liver fibrosis in biliary atresia

  • Review
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

This study systematically reviewed our team’s research on the mechanism and assessment of liver fibrosis in BA, summarized our experience, and discussed the future development direction.

Methods

In this study, Pubmed and Wanfang databases were searched to collect the literature published by our team on the mechanisms of liver fibrosis in BA and the assessment of liver fibrosis in BA, and the above research results were systematically reviewed.

Results

A total of 58 articles were retrieved. Among the included articles, 25 articles related to the mechanism of liver fibrosis in BA, and five articles evaluated liver fibrosis in BA. This article introduces the key pathways and molecules of liver fibrosis in BA and proposes a new grading system for liver fibrosis in BA.

Conclusions

The new BA liver fibrosis grading method is expected to assess children’s conditions, guide treatment, and improve prognosis more accurately. In addition, we believe that the TGF-β1 signaling pathway is the most important in the study of liver fibrosis in BA, and at the same time, the study of EMT occurrence in BA should also be deepened to resolve the controversy on this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

No datasets were generated or analyzed during the current study.

References

  1. Sutton H, Karpen SJ, Kamath BM (2024) Pediatric cholestatic diseases: common and unique pathogenic mechanisms. Annu Rev Pathol 19:319–344. https://doi.org/10.1146/annurev-pathmechdis-031521-025623

    Article  CAS  PubMed  Google Scholar 

  2. Quelhas P, Cerski C, Dos Santos JL (2022) Update on etiology and pathogenesis of biliary atresia. Curr Pediatr Rev 19(1):48–67. https://doi.org/10.2174/1573396318666220510130259

    Article  PubMed  Google Scholar 

  3. Liu S, Yang Q, Ji Q, Wang Z, Sun R, Zhan J (2024) Effect of Kasai procedure on liver transplantation in children with biliary atresia: a systematic review and updated meta-analysis. Transl Pediatr 13(1):10–25. https://doi.org/10.21037/tp-23-504

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu X, Wang X, Ding M et al (2023) Development and post-Kasai procedure prognostic relevance of histological features for biliary atresia. BMC Pediatr 23(1):589. https://doi.org/10.1186/s12887-023-04413-3

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wang Z, Chen Y, Peng C et al (2019) Five-year native liver survival analysis in biliary atresia from a single large Chinese center: the death/liver transplantation hazard change and the importance of rapid early clearance of jaundice. J Pediatr Surg 54(8):1680–1685. https://doi.org/10.1016/j.jpedsurg.2018.09.025

    Article  PubMed  Google Scholar 

  6. Song T, Zhan Ji, Gao W, Liu D, Zhang H (2015) Expression of CD14, CD34 and transforming growth factor-1 in liver biopsy of biliary atresia. Chin J Pediatr Surg 36(1):63–67. https://doi.org/10.3760/cma.j.issn.0253-3006.2015.01.015

    Article  Google Scholar 

  7. Yu C, Xiong X, Zhan J, Hu Xi, Gao W (2019) Expression and clinical significance of MMP-7 in hepatic fibrosis of biliary atresia. Tianjin Med J 47(1):38–42. https://doi.org/10.11958/20181302

    Article  Google Scholar 

  8. Wang H, Zhao J, Gou Q et al (2021) Expression of SOX9 in biliary atresia and its relationship with hepatic fibrosis. Chin J Pediatr Surg 42(6):512–518. https://doi.org/10.3760/cma.j.cn421158-20201119-00708

    Article  Google Scholar 

  9. Chen Li, Zhan J, Zhao J et al (2022) The diagnostic value of glypican 3 in children with biliary atresia and its relationship with liver fibrosis. Tianjin Med J 50(1):15–19. https://doi.org/10.11958/20211114

    Article  Google Scholar 

  10. Wang Q, Zheng Q, Zhang C et al (2022) Clinical significance of expression of leptin in patients with biliary atresia and hepatic fibrosis. Chin J Hepatobiliary Surg 28(4):275–279. https://doi.org/10.3760/cma.j.cn113884-20211119-00377

    Article  Google Scholar 

  11. Zhang C, Zhao J, Zheng Q et al (2022) Clinical implications of M2BP and M2BPGi in hepatic fibrosis of children with biliary atresia. Chin J Pediatr Surg 43(3):214–220. https://doi.org/10.3760/cma.j.cn421158-20210110-00016

    Article  Google Scholar 

  12. Liu Z, Zheng Q, Xu X et al (2023) Expression and clinical significance of CD163 in hepatic fibrosis with biliary atresia. Tianjin Med J 51(4):400–403. https://doi.org/10.11958/20221539

    Article  Google Scholar 

  13. Wang X, Xu X, Li M et al (2023) Expression and clinical significance of CCL25/CCR9 in liver fibrosis of biliary atresia. Chin J Pediatr Surg 44(10):897–903. https://doi.org/10.3760/cma.j.cn421158-20230601-00266

    Article  CAS  Google Scholar 

  14. Xu X, Wang X, Liu S et al (2023) Relationship between HDAC2 expression score and progression and prognosis of liver fibrosis in biliary atresia. Chin J Pediatr Surg 44(10):874–881. https://doi.org/10.3760/cma.j.cn421158-20230601-00265

    Article  Google Scholar 

  15. Yang R, Zhang C, Chen L et al (2023) Mechanism of FN1 promoting hepatic stellate cell activation via PI3K/Akt signaling pathway in hepatic fibrosis of biliary atresia. Chin J Pediatr Surg 44(2):114–124. https://doi.org/10.3760/cma.j.cn421158-20211116-00563

    Article  Google Scholar 

  16. Ding M, Gao T, Wei Y, Zhao L, Zhan J (2016) The study on mechanism of p-smad3 in hepatic fibrosis of biliary atresia. J Clin Ped Sur 1:29–33. https://doi.org/10.3969/j.issn.1671-6353.2016.01.009

    Article  Google Scholar 

  17. Ding M, Zhan J, Zhao L, Zhao L, Zhang A (2016) The effects of TGF-β1 and Smad2 on liver fibrosis of biliary atresia. Tianjin Med J 44(7):810–813. https://doi.org/10.11958/20150242

    Article  CAS  Google Scholar 

  18. Gao T, Zhan J, Ding M, Wei Y (2016) The expression and significance of integrinαvβ8, p38 and ERK1/2 in the liver of children with biliary atresia. Tianjin Med J. https://doi.org/10.11958/20160362

    Article  Google Scholar 

  19. Gao T, Zhan J, Chen Y, Zhang A, Wei Y (2017) Effects of JNK2, TIMP-1 and collagen III on liver fibrosis in patients with biliary atresia. J Clin Ped Sur 16(2):127–132. https://doi.org/10.3969/j.issn.1671-6353.2017.02.006

    Article  Google Scholar 

  20. Yan P, Zheng Y, Chen H et al (2018) Mechanism of plasminogen activator inhibitor-1 promoting liver fibrosis in biliary atresia. J Clin Ped Sur 17(10):790–794

    Google Scholar 

  21. Ge L, Gou Q, Zhao J et al (2021) The study on the mechanism of BMP-9 in liver fibrosis of biliary atresia. Tianjin Med J 49(10):1020–1025. https://doi.org/10.11958/20210765

    Article  Google Scholar 

  22. Zhao J, Xu X, Gou Q et al (2022) TGF-β1-mediated leukocyte cell-derived chemotaxin 2 Is associated with liver fibrosis in biliary atresia. Front Pediatr 10:901888. https://doi.org/10.3389/fped.2022.901888

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang S, Chen Y, Gao T, Zhan J (2017) Effects of RhoA, Rac1 and Cdc42 on liver fibrosis in patients with biliary atresia. Chin J Pediatr Surg 38(11):816–821. https://doi.org/10.3760/cma.j.issn.0253-3006.2017.11.003

    Article  Google Scholar 

  24. Gou Q, Zheng Q, Zhao J et al (2021) Expression and mechanism of Hedgehog signaling pathway in liver fibrosis of biliary atresia. Chin J Pediatr Surg 42(9):774–780. https://doi.org/10.3760/cma.j.cn421158-20210106-00008

    Article  Google Scholar 

  25. Zheng Q, Gou Q, Zhao J et al (2022) Mechanism of epidermal growth factor in hepatic fibrosis of biliary atresia. Chin J Pediatr Surg 43(4):310–315. https://doi.org/10.3760/cma.j.cn421158-20210105-00014

    Article  Google Scholar 

  26. Zheng Q, Li M, Chen L et al (2023) Potential therapeutic target of EGF on bile duct ligation model and biliary atresia children. Pediatr Res 94(4):1297–1307. https://doi.org/10.1038/s41390-023-02592-4

    Article  CAS  PubMed  Google Scholar 

  27. Wei Y, Ding M, Gao T, Hu X, Zhan J (2016) The expression of HIF-1αand VEGF in the patients with biliary atresia. J Clin Ped Sur 1:34–37. https://doi.org/10.3969/j.issn.1671-6353.2016.01.010

    Article  Google Scholar 

  28. Zhao J, Dou R, Zheng Q et al (2020) Expression and clinical significance of LECT2 in biliary atresia hepatic fibrosis. Chin J Pediatr Surg 41(7):633–639. https://doi.org/10.3760/cma.j.cn421158-20200222-00110

    Article  Google Scholar 

  29. Jia J, Zhan J, Yu C, Xiong X, Hu X (2019) Expression and significance of Notch-1, Jagged-1 and Hes-1 in liver fibrosis of children with biliary atresia. Chin J Pediatr Surg 40(5):399–403. https://doi.org/10.3760/cma.j.issn.0253-3006.2019.05.004

    Article  Google Scholar 

  30. Abudureyimu A, Lin F, Wang H et al (2021) Activation of Notch signaling pathway collaborated with macrophages for promoting liver fibrosis in biliary atresia. J Clin Ped Sur 20(4):376–381. https://doi.org/10.12260/lcxewkzz.2021.04.014

    Article  Google Scholar 

  31. Guan Z, Zhan J, Hu X, Luo X, Bao G, Liu Y (2012) The assessment and significance of liver fibrosis in children with biliary atresia. Chin J Pediatr Surg 33(11):815–819. https://doi.org/10.3760/cma.j.issn.0253-3006.2012.11.004

    Article  Google Scholar 

  32. Ding M, Zhan J, Liu D, Zhang H, Wei Y, Gao T (2015) Grading of hepatic fibrosis in biliary atresia. Chin J Pediatr Surg 36(11):866–872. https://doi.org/10.3760/cma.j.issn.0253-3006.2015.11.016

    Article  Google Scholar 

  33. Yu C, Zhan J, Gao W, Wang Z (2017) Clinicopathological analysis with different native liver survivals for biliary atresia after Kasai. J Clin Ped Sur 16(6):552–558. https://doi.org/10.3969/j.issn.1671-6353.2017.06.007

    Article  Google Scholar 

  34. Xiong X, Zhan J, Yu C, Hu X, Zhao L (2018) Relationship between native liver survival and ductular reaction in biliary atresia. J Clin Ped Sur 17(11):814–820. https://doi.org/10.3969/j.issn.1671-6353.2018.11.004

    Article  Google Scholar 

  35. Iordanskaia T, Hubal MJ, Koeck E, Rossi C, Schwarz K, Nadler EP (2013) Dysregulation of upstream and downstream transforming growth factor-β transcripts in livers of children with biliary atresia and fibrogenic gene signatures. J Pediatr Surg 48(10):2047–2053. https://doi.org/10.1016/j.jpedsurg.2013.03.047

    Article  PubMed  PubMed Central  Google Scholar 

  36. Xu F, Liu C, Zhou D, Zhang L (2016) TGF-β/SMAD pathway and its regulation in hepatic fibrosis. J Histochem Cytochem 64(3):157–167. https://doi.org/10.1369/0022155415627681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jiang Y, Wu C, Boye A et al (2015) MAPK inhibitors modulate Smad2/3/4 complex cyto-nuclear translocation in myofibroblasts via Imp7/8 mediation. Mol Cell Biochem 406(1–2):255–262. https://doi.org/10.1007/s11010-015-2443-x

    Article  CAS  PubMed  Google Scholar 

  38. Mu D, Cambier S, Fjellbirkeland L et al (2002) The integrin alpha(v)beta8 mediates epithelial homeostasis through MT1-MMP-dependent activation of TGF-beta1. J Cell Biol 157(3):493–507. https://doi.org/10.1083/jcb.200109100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Breitkopf-Heinlein K, Meyer C, König C et al (2017) BMP-9 interferes with liver regeneration and promotes liver fibrosis. Gut 66(5):939–954. https://doi.org/10.1136/gutjnl-2016-313314

    Article  CAS  PubMed  Google Scholar 

  40. Addante A, Roncero C, Almalé L et al (2018) Bone morphogenetic protein 9 as a key regulator of liver progenitor cells in DDC-induced cholestatic liver injury. Liver Int 38(9):1664–1675. https://doi.org/10.1111/liv.13879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen Y, Fan Y, Guo DY et al (2020) Study on the relationship between hepatic fibrosis and epithelial-mesenchymal transition in intrahepatic cells. Biomed Pharmacother 129:110413. https://doi.org/10.1016/j.biopha.2020.110413

    Article  CAS  PubMed  Google Scholar 

  42. Wang JY, Cheng H, Zhang HY et al (2019) Suppressing microRNA-29c promotes biliary atresia-related fibrosis by targeting DNMT3A and DNMT3B. Cell Mol Biol Lett 24:10. https://doi.org/10.1186/s11658-018-0134-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cui S, Leyva-Vega M, Tsai EA et al (2013) Evidence from human and zebrafish that GPC1 is a biliary atresia susceptibility gene. Gastroenterology 144(5):1107-1115.e3. https://doi.org/10.1053/j.gastro.2013.01.022

    Article  CAS  PubMed  Google Scholar 

  44. Tang V, Cofer ZC, Cui S, Sapp V, Loomes KM, Matthews RP (2016) Loss of a candidate biliary atresia susceptibility gene, add3a, causes biliary developmental defects in zebrafish. J Pediatr Gastroenterol Nutr 63(5):524–530. https://doi.org/10.1097/MPG.0000000000001375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sheng W, Tang J, Cao R, Shi X, Ma Y, Dong M (2022) Numb-PRRL promotes TGF-β1- and EGF-induced epithelial-to-mesenchymal transition in pancreatic cancer. Cell Death Dis 13(2):173. https://doi.org/10.1038/s41419-022-04609-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sakata K, Eda S, Lee ES, Hara M, Imoto M, Kojima S (2014) Neovessel formation promotes liver fibrosis via providing latent transforming growth factor-β. Biochem Biophys Res Commun 443(3):950–956. https://doi.org/10.1016/j.bbrc.2013.12.074

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y, Jiang M, Tang ST et al (2017) Laparoscopic finding of a hepatic subcapsular spider-like telangiectasis sign in biliary atresia. World J Gastroenterol 23(39):7119–7128. https://doi.org/10.3748/wjg.v23.i39.7119

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu M, Xu HH, Lin Y et al (2019) LECT2, a ligand for Tie1, plays a crucial role in liver fibrogenesis. Cell 178(6):1478-1492.e20. https://doi.org/10.1016/j.cell.2019.07.021

    Article  CAS  PubMed  Google Scholar 

  49. Qiu JL, Zhang GF, Chai YN et al (2022) Ligustrazine attenuates liver fibrosis by targeting miR-145 mediated transforming growth factor-β/Smad signaling in an animal model of biliary atresia. J Pharmacol Exp Ther 381(3):257–265. https://doi.org/10.1124/jpet.121.001020

    Article  CAS  PubMed  Google Scholar 

  50. Meng L, Liu J, Wang J et al (2021) Characteristics of the gut microbiome and IL-13/TGF-β1 mediated fibrosis in post-Kasai cholangitis of biliary atresia. Front Pediatr 9:751204. https://doi.org/10.3389/fped.2021.751204

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yang Y, Liu YJ, Tang ST et al (2013) Elevated Th17 cells accompanied by decreased regulatory T cells and cytokine environment in infants with biliary atresia. Pediatr Surg Int 29(12):1249–1260. https://doi.org/10.1007/s00383-013-3421-6

    Article  PubMed  Google Scholar 

  52. Vejchapipat P, Theamboonlers A, Poomsawat S, Chittmittrapap S, Poovorawan Y (2008) Serum transforming growth factor-beta1 and epidermal growth factor in biliary atresia. Eur J Pediatr Surg 18(6):415–418. https://doi.org/10.1055/s-2008-1038950

    Article  CAS  PubMed  Google Scholar 

  53. Ramm GA, Nair VG, Bridle KR, Shepherd RW, Crawford DH (1998) Contribution of hepatic parenchymal and nonparenchymal cells to hepatic fibrogenesis in biliary atresia. Am J Pathol 153(2):527–535. https://doi.org/10.1016/S0002-9440(10)65595-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lee SY, Chuang JH, Huang CC et al (2004) Identification of transforming growth factors actively transcribed during the progress of liver fibrosis in biliary atresia. J Pediatr Surg 39(5):702–708. https://doi.org/10.1016/j.jpedsurg.2004.01.030

    Article  PubMed  Google Scholar 

  55. Siyu P, Junxiang W, Qi W, Yimao Z, Shuguang J (2022) The role of GLI in the regulation of hepatic epithelial-mesenchymal transition in biliary atresia. Front Pediatr 10:861826. https://doi.org/10.3389/fped.2022.861826

    Article  PubMed  PubMed Central  Google Scholar 

  56. Harada K, Sato Y, Ikeda H et al (2009) Epithelial-mesenchymal transition induced by biliary innate immunity contributes to the sclerosing cholangiopathy of biliary atresia. J Pathol 217(5):654–664. https://doi.org/10.1002/path.2488

    Article  CAS  PubMed  Google Scholar 

  57. Deng YH, Pu CL, Li YC et al (2011) Analysis of biliary epithelial-mesenchymal transition in portal tract fibrogenesis in biliary atresia. Dig Dis Sci 56(3):731–740. https://doi.org/10.1007/s10620-010-1347-6

    Article  CAS  PubMed  Google Scholar 

  58. Xiao Y, Zhou Y, Chen Y et al (2015) The expression of epithelial-mesenchymal transition-related proteins in biliary epithelial cells is associated with liver fibrosis in biliary atresia. Pediatr Res 77(2):310–315. https://doi.org/10.1038/pr.2014.181

    Article  CAS  PubMed  Google Scholar 

  59. Chu AS, Diaz R, Hui JJ et al (2011) Lineage tracing demonstrates no evidence of cholangiocyte epithelial-to-mesenchymal transition in murine models of hepatic fibrosis. Hepatology 53(5):1685–1695. https://doi.org/10.1002/hep.24206

    Article  PubMed  Google Scholar 

  60. Scholten D, Osterreicher CH, Scholten A et al (2010) Genetic labeling does not detect epithelial-to-mesenchymal transition of cholangiocytes in liver fibrosis in mice. Gastroenterology 139(3):987–998. https://doi.org/10.1053/j.gastro.2010.05.005

    Article  CAS  PubMed  Google Scholar 

  61. Taura K, Iwaisako K, Hatano E, Uemoto S (2016) Controversies over the epithelial-to-mesenchymal transition in liver fibrosis. J Clin Med 5(1):9. https://doi.org/10.3390/jcm5010009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robertson H, Kirby JA, Yip WW, Jones DEJ, Burt AD (2007) Biliary epithelial-mesenchymal transition in posttransplantation recurrence of primary biliary cirrhosis. Hepatology 45(4):977–981. https://doi.org/10.1002/hep.21624

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding by Tianjin Key Medical Discipline (Specialty) Construction Project, the Tianjin Science and Technology Program (No.21ZXGWSY00070) and the Tianjin Applied Basic Research Project (No.22JCZDJC00290).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jianghua Zhan, Shaowen Liu; administrative support: Jianghua Zhan; drawing of figures: Qianhui Yang; data extraction: Shaowen Liu, Yu Meng, Qianhui Yang; manuscript writing: all authors. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianghua Zhan.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

This is a systematic review. No ethical approval is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 91 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, J., Liu, S., Meng, Y. et al. Systematic review of the mechanism and assessment of liver fibrosis in biliary atresia. Pediatr Surg Int 40, 205 (2024). https://doi.org/10.1007/s00383-024-05778-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00383-024-05778-x

Keywords

Navigation