Abstract
Animal studies support RCT findings of improved liver function and short-term benefits using repurposed Granulocyte Colonic Stimulating Factor GCSF in adults with decompensated cirrhosis. We describe the protocol for phase 2 RCT of sequential Kasai-GCSF under an FDA-approved IND to test that GCSF improves early bile flow and post-Kasai biliary atresia BA clinical outcome. Immediate post-Kasai neonates, age 15–180 days, with biopsy-confirmed type 3 BA, without access to early liver transplantation, will be randomized 1:1 to standard of care SOC + GCSF at 10 ug/kg in 3 daily doses within 4 days of Kasai vs SOC + NO-GCSF (ClinicalTrials.gov NCT0437391). They will be recruited from children’s hospitals in Vietnam, Pakistan and one US center. The primary objective is to demonstrate that GCSF decreases the proportion of subjects with a 3-month post-Kasai serum Total Bilirubin ≥ 34 umol/L by 20%, (for a = 0.05, b = 0.80, i.e., calculated sample size of 218 subjects). The secondary objectives are to demonstrate that the frequency of post-Kasai cholangitis at 6-month and 24-month transplant-free survival are improved. The benefits are that GCSF is an affordable BA adjunct therapy, especially in developing countries, to improve biliary complications, enhance quality of liver and survival while diminishing costly liver transplantation.
Clinical trial registration: A phase 1 for GCSF dose and safety determination under ClinicalTrials.gov identifier NCT03395028 was completed in 2019. The current Phase 2 trial was registered under NCT04373941.
This is a preview of subscription content, access via your institution.

Abbreviations
- BA:
-
Biliary atresia
- HSC:
-
Hematopoietic stem cells
- GCSF:
-
Granulocyte-colony stimulating factor
- CD:
-
Cluster of differentiation
- RCT:
-
Randomized clinical trial
- FDA:
-
Food and drug administration
- IND:
-
Investigational new drug
- NCT:
-
National clinical trial
- VN:
-
Vietnam
- TBi:
-
Total bilirubin
- IE:
-
Inclusion/exclusion
- GGT:
-
Gamma glutamyl transpeptidase
- WBC:
-
White blood cell count
- BASM:
-
Biliary atresia splenic malformation syndrome
- CBC:
-
Complete blood count
- LFT:
-
Liver function test
- INR:
-
International normalized ratio
- PELD:
-
Pediatric end stage liver disease
- CD:
-
Cluster of differentiation
- BEC:
-
Biliary epithelial cell
- CMV:
-
Cytomegalovirus
- CTCAE:
-
Common terminology criteria for adverse events
- DR:
-
Ductular reaction
- DSMB:
-
Data safety monitoring board
- PBC:
-
Primary biliary cirrhosis
- PSC:
-
Primary sclerosing cholangitis
- TH17:
-
T helper 17
References
Bezerra JA, Wells RG, Mack CL, Karpen SJ, Hoofnagle JH, Doo E et al (2018) Biliary atresia: clinical and research challenges for the Twenty-First Century. Hepatology 68(3):1163–1173
Theise ND, Badve S, Saxena R, Henegariu O, Sell S, Crawford JM et al (2000) Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology 31(1):235–240
Theise ND, Nimmakayalu M, Gardner R, Illei PB, Morgan G, Teperman L et al (2000) Liver from bone marrow in humans. Hepatology 32(1):11–16
Kholodenko IV, Yarygin KN (2017) Cellular mechanisms of liver regeneration and cell-based therapies of liver diseases. Biomed Res Int 2017:8910821
Dwyer BJ, Macmillan MT, Brennan PN, Forbes SJ (2021) Cell therapy for advanced liver diseases: repair or rebuild. J Hepatol 74(1):185–199
de Kruijf EFM, Fibbe WE, van Pel M (2020) Cytokine-induced hematopoietic stem and progenitor cell mobilization: unraveling interactions between stem cells and their niche. Ann N Y Acad Sci 1466(1):24–38
Busch CJ, Wanner GA, Menger MD, Vollmar B (2004) Granulocyte colony-stimulating factor (G-CSF) reduces not only gram-negative but also gram-positive infection-associated proinflammatory cytokine release by interaction between Kupffer cells and leukocytes. Inflamm Res 53(5):205–210
Fang B, Luo S, Song Y, Li N, Li H, Zhao RC (2010) Intermittent dosing of G-CSF to ameliorate carbon tetrachloride-induced liver fibrosis in mice. Toxicology 270(1):43–48
Vollmar B, Messner S, Wanner GA, Hartung T, Menger MD (1997) Immunomodulatory action of G-CSF in a rat model of endotoxin-induced liver injury: an intravital microscopic analysis of Kupffer cell and leukocyte response. J Leukoc Biol 62(6):710–718
Yannaki E, Athanasiou E, Xagorari A, Constantinou V, Batsis I, Kaloyannidis P et al (2005) G-CSF-primed hematopoietic stem cells or G-CSF per se accelerate recovery and improve survival after liver injury, predominantly by promoting endogenous repair programs. Exp Hematol 33(1):108–119
Do HQ, Le TV, Dang MT, Pham-le TT, Tran LV, Huynh KC, Holterman A, Truong NH (2019) Recombinant human GCSF alleviates liver fibrosis in bile duct-ligated mice. Biomed Res Ther 6(6):3222–3232
Anand L, Bihari C, Kedarisetty CK, Rooge SB, Kumar D, Shubham S et al (2019) Early cirrhosis and a preserved bone marrow niche favour regenerative response to growth factors in decompensated cirrhosis. Liver Int 39(1):115–126
Garg V, Garg H, Khan A, Trehanpati N, Kumar A, Sharma BC et al (2012) Granulocyte colony-stimulating factor mobilizes CD34(+) cells and improves survival of patients with acute-on-chronic liver failure. Gastroenterology 142(3):505–512
Yang Q, Yang Y, Shi Y, Lv F, He J, Chen Z (2016) Effects of granulocyte colony-stimulating factor on patients with liver failure: a meta-analysis. J Clin Transl Hepatol 4(2):90–96
Chavez-Tapia NC, Mendiola-Pastrana I, Ornelas-Arroyo VJ, Norena-Herrera C, Vidana-Perez D, Delgado-Sanchez G et al (2015) Granulocyte-colony stimulating factor for acute-on-chronic liver failure: systematic review and meta-analysis. Ann Hepatol 14(5):631–641
Holterman A, Nguyen HPA, Nadler E, Vu GH, Mohan P, Vu M et al (2021) Granulocyte-colony stimulating factor GCSF mobilizes hematopoietic stem cells in Kasai patients with biliary atresia in a phase 1 study and improves short term outcome. J Pediatr Surg 56(7):1179–1185
Chung PHY, Zheng S, Tam PKH (2020) Biliary atresia: east versus west. Semin Pediatr Surg 29(4):150950
Chardot C, Buet C, Serinet MO, Golmard JL, Lachaux A, Roquelaure B et al (2013) Improving outcomes of biliary atresia: French national series 1986–2009. J Hepatol 58(6):1209–1217
Shneider BL, Magee JC, Karpen SJ, Rand EB, Narkewicz MR, Bass LM et al (2016) Total serum bilirubin within 3 months of hepatoportoenterostomy predicts short-term outcomes in biliary atresia. J Pediatr 170(211–7):e1-2
Shneider BL, Brown MB, Haber B, Whitington PF, Schwarz K, Squires R et al (2006) A multicenter study of the outcome of biliary atresia in the United States, 1997 to 2000. J Pediatr 148(4):467–474
van ErnestHeurn LW, Saing H, Tam PK (2003) Cholangitis after hepatic portoenterostomy for biliary atresia: a multivariate analysis of risk factors. J Pediatr 142(5):566–571
Koga H, Wada M, Nakamura H, Miyano G, Okawada M, Lane GJ et al (2013) Factors influencing jaundice-free survival with the native liver in post-portoenterostomy biliary atresia patients: results from a single institution. J Pediatr Surg 48(12):2368–2372
Zhen C, Guoliang Q, Lishuang M, Zhen Z, Chen W, Jun Z et al (2015) Design and validation of an early scoring system for predicting early outcomes of type III biliary atresia after Kasai’s operation. Pediatr Surg Int 31:535–542
Wu ET, Chen HL, Ni YH, Lee PI, Hsu HY, Lai HS et al (2001) Bacterial cholangitis in patients with biliary atresia: impact on short-term outcome. Pediatr Surg Int 17(5–6):390–395
Qiao G, Li L, Cheng W, Zhang Z, Ge J, Wang C (2015) Conditional probability of survival in patients with biliary atresia after Kasai portoenterostomy: a Chinese population-based study. J Pediatr Surg 50(8):1310–1315
Kiriyama S, Kozaka K, Takada T, Strasberg SM, Pitt HA, Gabata T et al (2018) Tokyo guidelines 2018: diagnostic criteria and severity grading of acute cholangitis (with videos). J Hepatobiliary Pancreat Sci 25(1):17–30
Baek SH, Kang JM, Ihn K, Han SJ, Koh H, Ahn JG (2020) The Epidemiology and etiology of cholangitis after Kasai portoenterostomy in patients with biliary atresia. J Pediatr Gastroenterol Nutr 70(2):171–177
Low Y, Vijayan V, Tan CE (2001) The prognostic value of ductal plate malformation and other histologic parameters in biliary atresia: an immunohistochemical study. J Pediatr 139(2):320–322
Safwan M, Ramachandran P, Vij M, Shanmugam N, Rela M (2015) Impact of ductal plate malformation on survival with native liver in children with biliary atresia. Pediatr Surg Int 31(9):837–843
Zani A, Quaglia A, Hadzic N, Zuckerman M, Davenport M (2015) Cytomegalovirus-associated biliary atresia: an aetiological and prognostic subgroup. J Pediatr Surg 50(10):1739–1745
So J, Kim A, Lee SH, Shin D (2020) Liver progenitor cell-driven liver regeneration. Exp Mol Med 52(8):1230–1238
Roskams TA, Libbrecht L, Desmet VJ (2003) Progenitor cells in diseased human liver. Semin Liver Dis 23(4):385–396
Michalopoulos GK, Khan Z (2015) Liver stem cells: experimental findings and implications for human liver disease. Gastroenterology 149(4):876–882
Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O’Duibhir E, Dwyer BJ et al (2017) Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547(7663):350–354
Sato K, Marzioni M, Meng F, Francis H, Glaser S, Alpini G (2019) Ductular reaction in liver diseases: pathological mechanisms and translational significances. Hepatology 69(1):420–430
Williams MJ, Clouston AD, Forbes SJ (2014) Links between hepatic fibrosis, ductular reaction, and progenitor cell expansion. Gastroenterology 146(2):349–356
Nagula S, Jain D, Groszmann RJ, Garcia-Tsao G (2006) Histological-hemodynamic correlation in cirrhosis-a histological classification of the severity of cirrhosis. J Hepatol 44(1):111–117
Holterman AX, Tan Y, Kim W, Yoo KW, Costa RH (2002) Diminished hepatic expression of the HNF-6 transcription factor during bile duct obstruction. Hepatology 35(6):1392–1399
Banales JM, Huebert RC, Karlsen T, Strazzabosco M, LaRusso NF, Gores GJ (2019) Cholangiocyte pathobiology. Nat Rev Gastroenterol Hepatol 16(5):269–281
Ikenaga N, Liu SB, Sverdlov DY, Yoshida S, Nasser I, Ke Q et al (2015) A new Mdr2(-/-) mouse model of sclerosing cholangitis with rapid fibrosis progression, early-onset portal hypertension, and liver cancer. Am J Pathol 185(2):325–334
Mohanty SK, Donnelly B, Temple H, Tiao GM (2019) A rotavirus-induced mouse model to study biliary atresia and neonatal cholestasis. Methods Mol Biol 1981:259–271
Guillot A, Guerri L, Feng D, Kim SJ, Ahmed YA, Paloczi J et al (2021) Bile acid-activated macrophages promote biliary epithelial cell proliferation through integrin alphavbeta6 upregulation following liver injury. J Clin Invest 131(9):e132305
Desmet VJ (1995) Histopathology of cholestasis. Verh Dtsch Ges Pathol 79:233–240
Fabris L, Spirli C, Cadamuro M, Fiorotto R, Strazzabosco M (2017) Emerging concepts in biliary repair and fibrosis. Am J Physiol Gastrointest Liver Physiol 313(2):G102–G116
Karpen SJ, Kelly D, Mack C, Stein P (2020) Ileal bile acid transporter inhibition as an anticholestatic therapeutic target in biliary atresia and other cholestatic disorders. Hepatol Int 14(5):677–689
Trauner M, Fuchs CD, Halilbasic E, Paumgartner G (2017) New therapeutic concepts in bile acid transport and signaling for management of cholestasis. Hepatology 65(4):1393–1404
Fabris L, Cadamuro M, Guido M, Spirli C, Fiorotto R, Colledan M et al (2007) Analysis of liver repair mechanisms in Alagille syndrome and biliary atresia reveals a role for notch signaling. Am J Pathol 171(2):641–653
Kerola A, Lampela H, Lohi J, Heikkila P, Mutanen A, Jalanko H et al (2017) Molecular signature of active fibrogenesis prevails in biliary atresia after successful portoenterostomy. Surgery 162(3):548–556
Bezerra JA, Spino C, Magee JC, Shneider BL, Rosenthal P, Wang KS et al (2014) Use of corticosteroids after hepatoportoenterostomy for bile drainage in infants with biliary atresia: the START randomized clinical trial. JAMA 311(17):1750–1759
Sharma S, Kumar L, Mohanty S, Kumar R, Datta Gupta S, Gupta DK (2011) Bone marrow mononuclear stem cell infusion improves biochemical parameters and scintigraphy in infants with biliary atresia. Pediatr Surg Int 27(1):81–89
Philips CA, Augustine P, Rajesh S, Ahamed R, George T, Padsalgi G et al (2020) Granulocyte colony-stimulating factor use in decompensated cirrhosis: lack of survival benefit. J Clin Exp Hepatol 10(2):124–134
Newsome PN, Fox R, King AL, Barton D, Than NN, Moore J et al (2018) Granulocyte colony-stimulating factor and autologous CD133-positive stem-cell therapy in liver cirrhosis (REALISTIC): an open-label, randomised, controlled phase 2 trial. Lancet Gastroenterol Hepatol 3(1):25–36
Chaudhuri J, Mitra S, Mukhopadhyay D, Chakraborty S, Chatterjee S (2012) Granulocyte colony-stimulating factor for preterms with sepsis and neutropenia: a randomized controlled trial. J Clin Neonatol 1(4):202–206
Carr R, Modi N, Dore C. G-CSF and GM-CSF for treating or preventing neonatal infections. Cochrane Database Syst Rev. 2003;(3):CD003066
Martins A, Han J, Kim SO (2010) The multifaceted effects of granulocyte colony-stimulating factor in immunomodulation and potential roles in intestinal immune homeostasis. IUBMB Life 62(8):611–617
Lages CS, Simmons J, Maddox A, Jones K, Karns R, Sheridan R et al (2017) The dendritic cell-T helper 17-macrophage axis controls cholangiocyte injury and disease progression in murine and human biliary atresia. Hepatology 65(1):174–188
Jeffery HC, Hunter S, Humphreys EH, Bhogal R, Wawman RE, Birtwistle J et al (2019) Bidirectional cross-talk between biliary epithelium and Th17 cells promotes local Th17 expansion and bile duct proliferation in biliary liver diseases. J Immunol 203(5):1151–1159
Cameron-Christie SR, Wilde J, Gray A, Tankard R, Bahlo M, Markie D et al (2018) Genetic investigation into an increased susceptibility to biliary atresia in an extended New Zealand Maori family. BMC Med Genomics 11(1):121
Vic P, Gestas P, Mallet EC, Arnaud JP (1994) Biliary atresia in French Polynesia. Retrospective study of 10 years. J Arch Pediatr. 1(7):646–651
Liu MB, Huong TB, Hoang X, Doan L, Trinh S, Anh Nguyen HP et al (2017) Biliary atresia in Vietnam: management and the burden of disease. Surgery 161(2):533–537
Nguyen TC, Robert A, Nguyen PV, Nguyen NM, Truong DQ, Goyens P et al (2016) Current status and actual need for pediatric liver transplantation in Southern Vietnam. Pediatr Transplant 20(2):215–221
Acknowledgements
Funding is provided by Cures Within Reach and by Prometheus USA organizations.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nguyen, H.P.A., Ren, J., Butler, M. et al. Study protocol of Phase 2 open-label multicenter randomized controlled trial for granulocyte-colony stimulating factor (GCSF) in post-Kasai Type 3 biliary atresia. Pediatr Surg Int 38, 1019–1030 (2022). https://doi.org/10.1007/s00383-022-05115-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00383-022-05115-0
Keywords
- Biliary atresia
- Kasai, Randomized controlled trial
- GCSF
- Low middle income country