Skip to main content
Log in

Implementation and outcomes of enhanced recovery protocols in pediatric surgery: a systematic review and meta-analysis

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Background

This systematic review examines the feasibility and safety of implementing Enhanced recovery after Surgery (ERAS) protocols in children.

Study design

A systematic search of Medline, PubMed, and the Cochrane library for papers describing ERAS implementation in children between January 2000 and January 2021. The systematic review was performed according to the PRISMA statement. The meta-analysis was done using R Software (Ver 4.0.2). p value of < 0.05 was considered statistically significant.

Results

Sixteen studies, describing a total of 1723 patients, were included in the meta-analysis. An average of 15 (range 11–16) relevant components were implemented with an overall compliance close to 84%. The time to initiate feeds and reach full enteral nutrition was reduced in ERAS group with mean difference (MD) of − 21.20 h (95% CI − 22.80, − 19.59, p < 0.01), and − 2.20 days (95% CI − 2.72, − 1.71, p < 0.01), respectively. The use of opioids for postoperative analgesia was reduced with MD of -0.86 morphine equivalents mg/kg (95% CI − 1.40, − 0.32, p < 0.01). The length of hospital stay showed a significant reduction with MD of -2.54 days (95% CI − 2.94, − 2.13, p < 0.01). There was no difference in the complication and readmission rates between the groups.

Conclusion

ERP implementation in pediatric perioperative care is a viable option in a variety of surgical settings. There is clear evidence of a decrease in hospital stay duration with no increase in complication or readmission rates. The length of hospital stay reduced in inverse proportion to the number of ERAS elements implemented. Parental satisfaction is increased by initiating enteral feeding early, minimizing catheter and drain use, and reducing opioid use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adopted from: Moher et al. Journal of Clinical Epidemiology, 2009

Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brindle ME, Heiss K, Scott MJ, Herndon CA, Ljungqvist O, Koyle MA, on behalf PediatricERAS (Enhanced Recovery After Surgery) Society (2019) Embracing change: the era for pediatric ERAS is here. Pediatr Surg Int 35(6):631–634. https://doi.org/10.1007/s00383-019-04476-3 (Epub 2019 Apr 25. PMID: 31025092)

    Article  PubMed  Google Scholar 

  2. Imura K, Okada A (2000) Perioperative nutrition and metabolism in pediatric patients. World J Surg 24(12):1498–1502. https://doi.org/10.1007/s002680010268 (PMID: 11193714)

    Article  CAS  PubMed  Google Scholar 

  3. Lee JH, Zhang J, Wei L, Yu SP (2015) Neurodevelopmental implications of the general anesthesia in neonate and infants. Exp Neurol 272:50–60. https://doi.org/10.1016/j.expneurol.2015.03.028 (PMID: 25862287)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shinnick JK, Short HL, Heiss KF, Santore MT, Blakely ML, Raval MV (2016) Enhancing recovery in pediatric surgery: a review of the literature. J Surg Res 202(1):165–176. https://doi.org/10.1016/j.jss.2015.12.051 (Epub 2016 Jan 12 PMID: 27083963)

    Article  PubMed  Google Scholar 

  5. Pearson KL, Hall NJ (2017) What is the role of enhanced recovery after surgery in children? A scoping review. Pediatr Surg Int 33(1):43–51. https://doi.org/10.1007/s00383-016-3986-y (Epub 2016 Sep 27 PMID: 27679510)

    Article  PubMed  Google Scholar 

  6. Elias KM, Stone AB, McGinigle K, Tankou JI, Scott MJ, Fawcett WJ, Demartines N, Lobo DN, Ljungqvist O, Urman RD, ERAS®SocietyandERAS®USA (2019) The reporting on ERAS compliance, outcomes, and elements research (RECOvER) checklist: a joint statement by the ERAS® and ERAS® USA societies. World J Surg 43(1):1–8. https://doi.org/10.1007/s00268-018-4753-0 (PMID: 30116862; PMCID: PMC6313353)

    Article  PubMed  Google Scholar 

  7. Roberts K, Brindle M, McLuckie D (2020) Enhanced recovery after surgery in paediatrics: a review of the literature. BJA Educ 20(7):235–241. https://doi.org/10.1016/j.bjae.2020.03.004 (Epub 2020 May 6. PMID: 33456956; PMCID: PMC7807916)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C (2013) Assessing bias in studies of prognostic factors. Ann Intern Med 158(4):280–286. https://doi.org/10.7326/0003-4819-158-4-201302190-00009 (PMID: 23420236)

    Article  PubMed  Google Scholar 

  9. Han DS, Brockel MA, Boxley PJ, Dönmez Mİ, Saltzman AF, Wilcox DT, Rove KO (2021) Enhanced recovery after surgery and anesthetic outcomes in pediatric reconstructive urologic surgery. Pediatr Surg Int 37(1):151–159. https://doi.org/10.1007/s00383-020-04775-0 (Epub 2020 Nov 7 PMID: 33161476)

    Article  PubMed  Google Scholar 

  10. Rove KO, Brockel MA, Saltzman AF, Dönmez MI, Brodie KE, Chalmers DJ, Caldwell BT, Vemulakonda VM, Wilcox DT (2018) Prospective study of enhanced recovery after surgery protocol in children undergoing reconstructive operations. J Pediatr Urol 14(3):252.e1-252.e9. https://doi.org/10.1016/j.jpurol.2018.01.001 (Epub 2018 Feb 2 PMID: 29398586)

    Article  CAS  Google Scholar 

  11. Tang J, Liu X, Ma T, Lv X, Jiang W, Zhang J, Lu C, Chen H, Li W, Li H, Xie H, Du C, Geng Q, Feng J, Tang W (2020) Application of enhanced recovery after surgery during the perioperative period in infants with Hirschsprung’s disease—a multi-center randomized clinical trial. Clin Nutr 39(7):2062–2069. https://doi.org/10.1016/j.clnu.2019.10.001 (Epub 2019 Oct 16 PMID: 31676258)

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Cai D, Gao Z, Chen Q, Zhu J, Huang J (2019) Application of enhanced recovery after surgery in the treatment of children with congenital choledochal cyst. Zhejiang Da Xue Bao Yi Xue Ban 48(5):474–480 (Chinese PMID: 31901019)

    Google Scholar 

  13. Xu L, Gong S, Yuan LK, Chen JY, Yang WY, Zhu XC, Yu SY, Huang R, Tian S, Ding HY, He MD, Xiao SJ (2020) Enhanced recovery after surgery for the treatment of congenital duodenal obstruction. J Pediatr Surg 55(11):2403–2407. https://doi.org/10.1016/j.jpedsurg.2020.04.015 (Epub 2020 Apr 29 PMID: 32571537)

    Article  PubMed  Google Scholar 

  14. Hush SE, Chen JT, Brady CM, Soldanska M, Nusz DJ, Rhinehart DL, Heiss K, Crowley C, Williams JK (2019) Implementation of a modified enhanced recovery protocol in cleft palate repairs. J Craniofac Surg 30(7):2154–2158. https://doi.org/10.1097/SCS.0000000000005718 (PMID: 31283639)

    Article  PubMed  Google Scholar 

  15. Yalcin S, Walsh SM, Figueroa J, Heiss KF, Wulkan ML (2020) Does ERAS impact outcomes of laparoscopic sleeve gastrectomy in adolescents? Surg Obes Relat Dis 16(12):1920–1926. https://doi.org/10.1016/j.soard.2020.07.016 (Epub 2020 Jul 23 PMID: 32847759)

    Article  PubMed  Google Scholar 

  16. Purcell LN, Marulanda K, Egberg M, Mangat S, McCauley C, Chaumont N, Sadiq TS, Lupa C, McNaull P, McLean SE, Hayes-Jordan A, Phillips MR (2021) An enhanced recovery after surgery pathway in pediatric colorectal surgery improves patient outcomes. J Pediatr Surg 56(1):115–120. https://doi.org/10.1016/j.jpedsurg.2020.09.028 (Epub 2020 Oct 6 PMID: 33131774)

    Article  PubMed  Google Scholar 

  17. Edney JC, Lam H, Raval MV, Heiss KF, Austin TM (2019) Implementation of an enhanced recovery program in pediatric laparoscopic colorectal patients does not worsen analgesia despite reduced perioperative opioids: a retrospective, matched, non-inferiority study. Reg Anesth Pain Med 44(1):123–129. https://doi.org/10.1136/rapm-2018-000017 (PMID: 30640664)

    Article  PubMed  Google Scholar 

  18. Short HL, Heiss KF, Burch K, Travers C, Edney J, Venable C, Raval MV (2018) Implementation of an enhanced recovery protocol in pediatric colorectal surgery. J Pediatr Surg 53(4):688–692. https://doi.org/10.1016/j.jpedsurg.2017.05.004 (Epub 2017 May 12 PMID: 28545764)

    Article  PubMed  Google Scholar 

  19. Phillips MR, Adamson WT, McLean SE, Hance L, Lupa MC, Pittenger SL, Dave P, McNaull PP (2020) Implementation of a pediatric enhanced recovery pathway decreases opioid utilization and shortens time to full feeding. J Pediatr Surg 55(1):101–105. https://doi.org/10.1016/j.jpedsurg.2019.09.065 (Epub 2019 Nov 15. PMID: 31784102)

    Article  PubMed  Google Scholar 

  20. Tan Y, Shen Y, Li L, Yu J (2020) Protocol for enhanced recovery after surgery with 3D laparoscopic excision for choledochal cysts can benefit the recovery process. Pediatr Surg Int 36(5):643–648. https://doi.org/10.1007/s00383-020-04644-w (Epub 2020 Mar 26 PMID: 32219559)

    Article  PubMed  Google Scholar 

  21. Yeh A, Butler G, Strotmeyer S, Austin K, Visoiu M, Cladis F, Malek M (2020) ERAS protocol for pediatric laparoscopic cholecystectomy promotes safe and early discharge. J Pediatr Surg 55(1):96–100. https://doi.org/10.1016/j.jpedsurg.2019.09.053 (Epub 2019 Oct 25 PMID: 31708204)

    Article  PubMed  Google Scholar 

  22. Holmes DM, Polites SF, Roskos PL, Moir CR (2019) Opioid use and length of stay following minimally invasive pectus excavatum repair in 436 patients - Benefits of an enhanced recovery pathway. J Pediatr Surg 54(10):1976–1983. https://doi.org/10.1016/j.jpedsurg.2019.02.007 (Epub 2019 Mar 1 PMID: 30922685)

    Article  PubMed  Google Scholar 

  23. Gao R, Yang H, Li Y, Meng L, Li Y, Sun B, Zhang G, Yue M, Guo F (2019) Enhanced recovery after surgery in pediatric gastrointestinal surgery. J Int Med Res 47(10):4815–4826. https://doi.org/10.1177/0300060519865350 (Epub 2019 Aug 4. PMID: 31379230; PMCID: PMC6833409)

    Article  PubMed  PubMed Central  Google Scholar 

  24. Haid B, Karl A, Koen M, Mottl W, Haid A, Oswald J (2018) Enhanced recovery after surgery protocol for pediatric urological augmentation and diversion surgery using small bowel. J Urol 200(5):1100–1106. https://doi.org/10.1016/j.juro.2018.06.011 (Epub 2018 Jun 7 PMID: 29886091)

    Article  PubMed  Google Scholar 

  25. Shah SK, Uray KS, Stewart RH, Laine GA, Cox CS Jr (2011) Resuscitation-induced intestinal edema and related dysfunction: state of the science. J Surg Res 166(1):120–130. https://doi.org/10.1016/j.jss.2009.09.010 (Epub 2009 Sep 29. PMID: 19959186; PMCID: PMC3709455)

    Article  PubMed  Google Scholar 

  26. Lobo DN, Bostock KA, Neal KR, Perkins AC, Rowlands BJ, Allison SP (2002) Effect of salt and water balance on recovery of gastrointestinal function after elective colonic resection: a randomised controlled trial. Lancet 359(9320):1812–1818

    Article  Google Scholar 

  27. Gritsenko K, Khelemsky Y, Kaye AD, Vadivelu N, Urman RD (2014) Multimodal therapy in perioperative analgesia. Best Pract Res Clin Anaesthesiol 28(1):59–79. https://doi.org/10.1016/j.bpa.2014.03.001 (Epub 2014 Mar 15 PMID: 24815967)

    Article  PubMed  Google Scholar 

  28. Beverly A, Kaye AD, Ljungqvist O, Urman RD (2017) Essential elements of multimodal analgesia in enhanced recovery after surgery (ERAS) guidelines. Anesthesiol Clin 35(2):e115–e143. https://doi.org/10.1016/j.anclin.2017.01.018 (PMID: 28526156)

    Article  PubMed  Google Scholar 

  29. Oderda GM, Evans RS, Lloyd J, Lipman A, Chen C, Ashburn M, Burke J, Samore M (2003) Cost of opioid-related adverse drug events in surgical patients. J Pain Symptom Manage 25(3):276–283. https://doi.org/10.1016/s0885-3924(02)00691-7 (PMID: 12614962)

    Article  PubMed  Google Scholar 

  30. Shuman EK, Chenoweth CE (2018) Urinary catheter-associated infections. Infect Dis Clin North Am 32(4):885–897. https://doi.org/10.1016/j.idc.2018.07.002 (Epub 2018 Sep 18 PMID: 30241712)

    Article  PubMed  Google Scholar 

  31. Au AG, Shurraw S, Hoang H, Wang S, Wang X (2020) Effectiveness of a simple intervention for prevention of catheter-associated urinary tract infections on a medical hospital unit. J Infect Prev 21(6):221–227. https://doi.org/10.1177/1757177420939242 (Epub 2020 Jul 20. PMID: 33408759; PMCID: PMC7745581)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AKL: study search, study selection, data extraction, data synthesis, data interpretation, manuscript writing and editing. ASJ: study selection, data interpretation, manuscript writing. MB: data interpretation and statistics. SJ: conceptualization, study search, study selection, data synthesis, data interpretation, manuscript writing and editing.

Corresponding author

Correspondence to Susan Jehangir.

Ethics declarations

Conflict of interest

All the authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 KB)

Supplementary file2 (JPG 569 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, A.K., Joselyn, A.S., Babu, M. et al. Implementation and outcomes of enhanced recovery protocols in pediatric surgery: a systematic review and meta-analysis. Pediatr Surg Int 38, 157–168 (2022). https://doi.org/10.1007/s00383-021-05008-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-021-05008-8

Keywords

Navigation