Skip to main content
Log in

Computer-aided quantitative MSCT measurements may be useful for congenital lung malformations surgical approach selection

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

To examine the association between the MSCT quantitative measurements of congenital lung malformations (CLM) and the selection of surgical approaches (lobectomy vs. lung-sparing surgery).

Methods

This retrospective study evaluated CLM surgical cases at our institution from 2016 to 2018. MSCT quantitative measurements were generated by a semi-automated approach: the volume of the lesion (Vlesion), the volume of the lesion-involved lobe (Vlobe), the volume of the lesion-involved lung (Vlung) and the volume of the total lung (Vtotal lung). The proportions of Vlesion to Vlobe (Plesion/lobe), Vlesion to Vlung (Plesion/lung), and Vlesion to V total lung (Plesion/total lung) were calculated. We used Logistics regression to examine whether quantitative measurements were associated with the selection of surgical approaches.

Results

151 patients were included (median age at surgery 6 months). 82 patients underwent lung-sparing surgery, and 69 patients underwent lobectomy. Vlesion (OR 1.51, 95% CI 1.09–2.07), Plesion/lobe (OR 1.78, 95% CI 1.16–2.72), Plesion/lung (OR 1.63, 95% CI 1.13–2.35), and Plesion/total lung (OR 1.58, 95% CI 1.12–2.22) were positively associated with the selection of lobectomy.

Conclusion

The application of quantified MSCT analysis may provide insight into the quantitative characteristics of CLM, which could be potentially useful for surgical approach selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hall NJ, Stanton MP (2017) Long-term outcomes of congenital lung malformations. Semin Pediatr Surg 26:311–316. https://doi.org/10.1053/j.sempedsurg.2017.09.001

    Article  PubMed  Google Scholar 

  2. Wong K, Flake AW, Tibboel D, Rottier RJ, Tam P (2018) Congenital pulmonary airway malformation: advances and controversies. Lancet Child Adolesc Health 2:290–297. https://doi.org/10.1016/S2352-4642(18)30035-X

    Article  PubMed  Google Scholar 

  3. Criss CN, Musili N, Matusko N, Baker S, Geiger JD, Kunisaki SM (2018) Asymptomatic congenital lung malformations: is nonoperative management a viable alternative? J Pediatr Surg 53:1092–1097. https://doi.org/10.1016/j.jpedsurg.2018.02.065

    Article  PubMed  Google Scholar 

  4. Laberge JM, Flageole H, Pugash D, Khalife S, Blair G, Filiatrault D et al (2001) Outcome of the prenatally diagnosed congenital cystic adenomatoid lung malformation: a Canadian experience. Fetal Diagn Ther 16:178–186. https://doi.org/10.1159/000053905

    Article  CAS  PubMed  Google Scholar 

  5. Lima JS, Camargos PA, Aguiar RA, Campos AS, Aguiar MJ (2014) Pre and perinatal aspects of congenital cystic adenomatoid malformation of the lung. J Matern Fetal Neonatal Med 27:228–232. https://doi.org/10.3109/14767058.2013.807236

    Article  PubMed  Google Scholar 

  6. Bagrodia N, Cassel S, Liao J, Pitcher G, Shilyansky J (2014) Segmental resection for the treatment of congenital pulmonary malformations. J Pediatr Surg 49:905–909. https://doi.org/10.1016/j.jpedsurg.2014.01.021

    Article  PubMed  Google Scholar 

  7. Fascetti-Leon F, Gobbi D, Pavia SV, Aquino A, Ruggeri G, Gregori G et al (2013) Sparing-lung surgery for the treatment of congenital lung malformations. J Pediatr Surg 48:1476–1480. https://doi.org/10.1016/j.jpedsurg.2013.02.098

    Article  PubMed  Google Scholar 

  8. Style CC, Cass DL, Verla MA, Cruz SM, Lau PE, Lee TC et al (2018) Early vs late resection of asymptomatic congenital lung malformations. J Pediatr Surg. https://doi.org/10.1016/j.jpedsurg.2018.10.035

    Article  PubMed  Google Scholar 

  9. Shen C, Yu N, Wen L, Zhou S, Dong F, Liu M et al (2019) Risk stratification of acute pulmonary embolism based on the clot volume and right ventricular dysfunction on CT pulmonary angiography. Clin Respir J 13:674–682. https://doi.org/10.1111/crj.13064

    Article  PubMed  Google Scholar 

  10. Wei X, Ding Q, Yu N, Mi J, Ren J, Li J et al (2018) Imaging features of chronic bronchitis with preserved ratio and impaired spirometry (PRISm). Lung 196:649–658. https://doi.org/10.1007/s00408-018-0162-2

    Article  PubMed  Google Scholar 

  11. Yin N, Shen C, Dong F, Wang J, Guo Y, Bai L (2019) Computer-aided identification of interstitial lung disease based on computed tomography. J Xray Sci Technol 27:591–603. https://doi.org/10.3233/XST-180460

    Article  PubMed  Google Scholar 

  12. Pu J, Fuhrman C, Good WF, Sciurba FC, Gur D (2011) A differential geometric approach to automated segmentation of human airway tree. IEEE Trans Med Imaging 30:266–278. https://doi.org/10.1109/TMI.2010.2076300

    Article  PubMed  Google Scholar 

  13. Pu J, Roos J, Yi CA, Napel S, Rubin GD, Paik DS (2008) Adaptive border marching algorithm: automatic lung segmentation on chest CT images. Comput Med Imaging Graph 32:452–462. https://doi.org/10.1016/j.compmedimag.2008.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  15. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J et al (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform 12:77. https://doi.org/10.1186/1471-2105-12-77

    Article  Google Scholar 

  16. Durell J, Lakhoo K (2014) Congenital cystic lesions of the lung. Early Hum Dev 90:935–939. https://doi.org/10.1016/j.earlhumdev.2014.09.014

    Article  PubMed  Google Scholar 

  17. Fan D, Xia Q, Wu S, Liu L, Yu Z, Wang W et al (2017) Prevalence of prenatally diagnosed congenital cystic adenomatoid malformation among fetuses in China. Oncotarget 8:79587–79593. https://doi.org/10.18632/oncotarget.18579

    Article  PubMed  PubMed Central  Google Scholar 

  18. Annunziata F, Bush A, Borgia F, Raimondi F, Montella S, Poeta M et al (2019) Congenital lung malformations: unresolved issues and unanswered questions. Front Pediatr 7:239. https://doi.org/10.3389/fped.2019.00239

    Article  PubMed  PubMed Central  Google Scholar 

  19. Crombleholme TM, Coleman B, Hedrick H, Liechty K, Howell L, Flake AW et al (2002) Cystic adenomatoid malformation volume ratio predicts outcome in prenatally diagnosed cystic adenomatoid malformation of the lung. J Pediatr Surg 37:331–338. https://doi.org/10.1053/jpsu.2002.30832

    Article  PubMed  Google Scholar 

  20. Stoiber B, Moehrlen U, Kurmanavicius J, Meuli M, Haslinger C, Zimmermann R et al (2017) Congenital lung lesion: prenatal course, therapy and predictors of perinatal outcome. Ultraschall Med 38:158–165. https://doi.org/10.1055/s-0035-1553261

    Article  PubMed  Google Scholar 

  21. Calvert JK, Lakhoo K (2007) Antenatally suspected congenital cystic adenomatoid malformation of the lung: postnatal investigation and timing of surgery. J Pediatr Surg 42:411–414. https://doi.org/10.1016/j.jpedsurg.2006.10.015

    Article  PubMed  Google Scholar 

  22. Rothenberg SS, Middlesworth W, Kadennhe-Chiweshe A, Aspelund G, Kuenzler K, Cowles R et al (2015) Two decades of experience with thoracoscopic lobectomy in infants and children: standardizing techniques for advanced thoracoscopic surgery. J Laparoendosc Adv Surg Tech A 25:423–428. https://doi.org/10.1089/lap.2014.0350

    Article  PubMed  Google Scholar 

  23. Rothenberg SS, Shipman K, Kay S, Kadenhe-Chiweshe A, Thirumoorthi A, Garcia A et al (2014) Thoracoscopic segmentectomy for congenital and acquired pulmonary disease: a case for lung-sparing surgery. J Laparoendosc Adv Surg Tech A 24:50–54. https://doi.org/10.1089/lap.2013.0337

    Article  PubMed  Google Scholar 

  24. Zhang Z, Huang M (2015) Children with congenital cystic adenomatoid malformation of the lung CT diagnosis. Int J Clin Exp Med 8:4415–4419

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Xiaoqian Zhou for her help with image data collection. We also appreciated Dr. Lirong Wang’s advice on data management and statistical analysis.

Funding

This work was supported by funding from the Public Science and Technology research funds of China (No. 201402013) and the Shaanxi Key Research and Development Program (No. 2018SF-220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Chen or Jiwen Cheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, W., Shen, C., Yu, N. et al. Computer-aided quantitative MSCT measurements may be useful for congenital lung malformations surgical approach selection. Pediatr Surg Int 37, 1273–1280 (2021). https://doi.org/10.1007/s00383-021-04949-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-021-04949-4

Keywords

Navigation