Skip to main content
Log in

Endoplasmic reticulum stress in the acute intestinal epithelial injury of necrotizing enterocolitis

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Endoplasmic reticulum (ER) is a dynamic organelle that has many functions including protein synthesis, lipid synthesis, and calcium metabolism. Any perturbation in the ER such as accumulation of unfolded or misfolded proteins in the ER lumen causes ER stress. ER stress has been implicated in many intestinal inflammatory diseases. However, the role of ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis in preterm neonates, remains incompletely understood. In this review, we introduce ER structure, functions and summarize the intracellular signaling pathways involved in unfolded protein response (UPR), a survival mechanism in which cells exert an adaptive function to restore homeostasis in the ER. However, intense and prolonged ER stress induces apoptotic response which results in apoptotic cell death. We also discuss and highlight recent advances that have improved our understanding of the molecular mechanisms that regulate the ER stress in acute intestinal epithelial injuries such as necrotizing enterocolitis (NEC). We focus on the role of ER stress in influencing gut homeostasis in the neonatal period and on the potential therapeutic interventions to alleviate ER stress-induced cell death in NEC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    Article  CAS  PubMed  Google Scholar 

  2. Kato A et al (2019) Recurrent short-term hypoglycemia and hyperglycemia induce apoptosis and oxidative stress via the ER stress response in immortalized adult mouse Schwann (IMS32) cells. Neurosci Res 147:26–32

    Article  CAS  PubMed  Google Scholar 

  3. Hall NJ et al (2004) Hyperglycemia is associated with increased morbidity and mortality rates in neonates with necrotizing enterocolitis. J Pediatr Surg 39(6):898–901

    Article  CAS  PubMed  Google Scholar 

  4. Csala M et al (2012) The endoplasmic reticulum as the extracellular space inside the cell: role in protein folding and glycosylation. Antioxid Redox Signal 16(10):1100–1108

    Article  CAS  PubMed  Google Scholar 

  5. Hagiwara M, Nagata K (2012) Redox-dependent protein quality control in the endoplasmic reticulum: folding to degradation. Antioxid Redox Signal 16(10):1119–1128

    Article  CAS  PubMed  Google Scholar 

  6. Chipurupalli S et al (2019) Hypoxia induced ER stress response as an adaptive mechanism in cancer. Int J Mol Sci 20(3):749

    Article  CAS  PubMed Central  Google Scholar 

  7. Krebs J, Groenendyk J, Michalak M (2011) Ca2+-signaling, alternative splicing and endoplasmic reticulum stress responses. Neurochem Res 36(7):1198–1211

    Article  CAS  PubMed  Google Scholar 

  8. Smith JA (2018) Regulation of cytokine production by the unfolded protein response; implications for infection and autoimmunity. Front Immunol 9:422

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Dohrman A et al (1998) Mucin gene (MUC 2 and MUC 5AC) upregulation by gram-positive and gram-negative bacteria. Biochim Biophys Acta 1406(3):251–259

    Article  CAS  PubMed  Google Scholar 

  10. Romero-Brey I, Bartenschlager R (2016) Endoplasmic reticulum: the favorite intracellular niche for viral replication and assembly. Viruses 8(6):160

    Article  PubMed Central  CAS  Google Scholar 

  11. von dem Bussche A et al (2010) Hepatitis C virus NS2 protein triggers endoplasmic reticulum stress and suppresses its own viral replication. J Hepatol 53(5):797–804

    Article  CAS  Google Scholar 

  12. Afrazi A et al (2014) Toll-like receptor 4-mediated endoplasmic reticulum stress in intestinal crypts induces necrotizing enterocolitis. J Biol Chem 289(14):9584–9599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Walter P, Ron D (2011) The unfolded protein response: from stress pathway to homeostatic regulation. Science 334(6059):1081–1086

    Article  CAS  PubMed  Google Scholar 

  14. Mateus D et al (2018) Rab7a modulates ER stress and ER morphology. Biochim Biophys Acta Mol Cell Res 1865(5):781–793

    Article  CAS  PubMed  Google Scholar 

  15. Kim SK et al (2015) Palmitate induces cisternal ER expansion via the activation of XBP-1/CCTα-mediated phospholipid accumulation in RAW 2647 cells. Lipids Health Dis 14:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Schuck S et al (2009) Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol 187(4):525–536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang XZ et al (1998) Cloning of mammalian Ire1 reveals diversity in the ER stress responses. Embo j 17(19):5708–5717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang G et al (2006) ER stress disrupts Ca2+-signaling complexes and Ca2+ regulation in secretory and muscle cells from PERK-knockout mice. J Cell Sci 119(Pt 1):153–161

    Article  CAS  PubMed  Google Scholar 

  19. Shen J et al (2002) ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3(1):99–111

    Article  CAS  PubMed  Google Scholar 

  20. Lee AS (2005) The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods 35(4):373–381

    Article  CAS  PubMed  Google Scholar 

  21. Huang S, Xing Y, Liu Y (2019) Emerging roles for the ER stress sensor IRE1α in metabolic regulation and disease. J Biol Chem 294(49):18726–18741

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yoshida H et al (2006) pXBP1(U) encoded in XBP1 pre-mRNA negatively regulates unfolded protein response activator pXBP1(S) in mammalian ER stress response. J Cell Biol 172(4):565–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yoshida H et al (2001) XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107(7):881–891

    Article  CAS  PubMed  Google Scholar 

  24. Khan MF, Spurgeon S, von der Haar T (2018) Origins of robustness in translational control via eukaryotic translation initiation factor (eIF) 2. J Theor Biol 445:92–102

    Article  CAS  PubMed  Google Scholar 

  25. Meng X et al (2018) Periostin has a protective role in melatonin-induced cell apoptosis by inhibiting the eIF2α-ATF4 pathway in human osteoblasts. Int J Mol Med 41(2):1003–1012

    CAS  PubMed  Google Scholar 

  26. Haze K et al (1999) Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell 10(11):3787–3799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chotikatum S, Naim HY, El-Najjar N (2018) Inflammation induced ER stress affects absorptive intestinal epithelial cells function and integrity. Int Immunopharmacol 55:336–344

    Article  CAS  PubMed  Google Scholar 

  28. Heazlewood CK et al (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5(3):e54

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li B et al (2019) Bovine milk-derived exosomes enhance goblet cell activity and prevent the development of experimental necrotizing enterocolitis. PLoS ONE 14(1):e0211431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu RY et al (2019) Human milk oligosaccharides increase mucin expression in experimental necrotizing enterocolitis. Mol Nutr Food Res 63(3):e1800658

    PubMed  Google Scholar 

  31. Hu H et al (2018) The C/EBP homologous protein (CHOP) transcription factor functions in endoplasmic reticulum stress-induced apoptosis and microbial infection. Front Immunol 9:3083

    Article  CAS  PubMed  Google Scholar 

  32. Yamaguchi H, Wang HG (2004) CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279(44):45495–45502

    Article  CAS  PubMed  Google Scholar 

  33. Lu P et al (2013) Endoplasmic reticulum stress, unfolded protein response and altered T cell differentiation in necrotizing enterocolitis. PLoS ONE 8(10):e78491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaser A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134(5):743–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee JY et al (2018) Molecular pathophysiology of epithelial barrier dysfunction in inflammatory bowel diseases. Proteomes 6(2):17

    Article  PubMed Central  CAS  Google Scholar 

  36. Ravisankar S et al (2018) Necrotizing enterocolitis leads to disruption of tight junctions and increase in gut permeability in a mouse model. BMC Pediatr 18(1):372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. De Plaen IG (2013) Inflammatory signaling in necrotizing enterocolitis. Clin Perinatol 40(1):109–124

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lodha A et al (2017) The role of interleukin-6 and interleukin-8 circulating cytokines in differentiating between feeding intolerance and necrotizing enterocolitis in preterm infants. Am J Perinatol 34(13):1286–1292

    Article  PubMed  Google Scholar 

  39. Hall NJ, Eaton S, Pierro A (2013) Royal australasia of surgeons guest lecture necrotizing enterocolitis: prevention, treatment, and outcome. J Pediatr Surg 48(12):2359–2367

    Article  PubMed  Google Scholar 

  40. Rees CM, Pierro A, Eaton S (2007) Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Arch Dis Child Fetal Neonatal Ed 92(3):F193–F198

    Article  PubMed  Google Scholar 

  41. Cotten CM et al (2005) Prolonged hospital stay for extremely premature infants: risk factors, center differences, and the impact of mortality on selecting a best-performing center. J Perinatol 25(10):650–655

    Article  PubMed  Google Scholar 

  42. Chen Y et al (2016) The role of ischemia in necrotizing enterocolitis. J Pediatr Surg 51(8):1255–1261

    Article  PubMed  Google Scholar 

  43. Chen Y, et al. (2019) Formula feeding and immature gut microcirculation promote intestinal hypoxia, leading to necrotizing enterocolitis. Dis Model Mech 12(12):1–10

    Google Scholar 

  44. Thompson AM, Bizzarro MJ (2008) Necrotizing enterocolitis in newborns: pathogenesis, prevention and management. Drugs 68(9):1227–1238

    Article  CAS  PubMed  Google Scholar 

  45. Li P et al (2019) TUDCA attenuates intestinal injury and inhibits endoplasmic reticulum stress-mediated intestinal cell apoptosis in necrotizing enterocolitis. Int Immunopharmacol 74:105665

    Article  CAS  PubMed  Google Scholar 

  46. Simons BD, Clevers H (2011) Stem cell self-renewal in intestinal crypt. Exp Cell Res 317(19):2719–2724

    Article  CAS  PubMed  Google Scholar 

  47. Zhou Y et al (2017) Inflammation and apoptosis: dual mediator role for toll-like receptor 4 in the development of necrotizing enterocolitis. Inflamm Bowel Dis 23(1):44–56

    Article  PubMed  Google Scholar 

  48. Schaart MW et al (2009) Epithelial functions of the residual bowel after surgery for necrotising enterocolitis in human infants. J Pediatr Gastroenterol Nutr 49(1):31–41

    Article  PubMed  Google Scholar 

  49. van Gorp C et al (2021) Intestinal goblet cell loss during chorioamnionitis in fetal lambs: mechanistic insights and postnatal implications. Int J Mol Sci 22(4):1946

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Bergmann KR et al (2013) Bifidobacteria stabilize claudins at tight junctions and prevent intestinal barrier dysfunction in mouse necrotizing enterocolitis. Am J Pathol 182(5):1595–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li B et al (2021) Intestinal epithelial tight junctions and permeability can be rescued through the regulation of endoplasmic reticulum stress by amniotic fluid stem cells during necrotizing enterocolitis. Faseb J 35(1):e21265

    CAS  PubMed  Google Scholar 

  52. Nieto N et al (2002) Dietary polyunsaturated fatty acids improve histological and biochemical alterations in rats with experimental ulcerative colitis. J Nutr 132(1):11–19

    Article  CAS  PubMed  Google Scholar 

  53. Zhang Y et al (2011) α-Linolenic acid prevents endoplasmic reticulum stress-mediated apoptosis of stearic acid lipotoxicity on primary rat hepatocytes. Lipids Health Dis 10:81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Caplan MS et al (2001) Effect of polyunsaturated fatty acid (PUFA) supplementation on intestinal inflammation and necrotizing enterocolitis (NEC) in a neonatal rat model. Pediatr Res 49(5):647–652

    Article  CAS  PubMed  Google Scholar 

  55. Nakagawa T et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103

    Article  CAS  PubMed  Google Scholar 

  56. Zhu X et al (2020) Potential role of endoplasmic reticulum stress is involved in the protection of fish oil on neonatal rats with necrotizing enterocolitis. Sci Rep 10(1):6448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yoon YM et al (2016) Tauroursodeoxycholic acid reduces ER stress by regulating of Akt-dependent cellular prion protein. Sci Rep 6:39838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Berger E, Haller D (2011) Structure-function analysis of the tertiary bile acid TUDCA for the resolution of endoplasmic reticulum stress in intestinal epithelial cells. Biochem Biophys Res Commun 409(4):610–615

    Article  CAS  PubMed  Google Scholar 

  59. Fu D et al (2019) β-arrestin-2 enhances intestinal epithelial apoptosis in necrotizing enterocolitis. Aging (Albany NY) 11(19):8294–8312

    Article  CAS  Google Scholar 

  60. Biouss G et al (2019) Experimental necrotizing enterocolitis induces neuroinflammation in the neonatal brain. J Neuroinflammation 16(1):97

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li B et al (2019) Impaired Wnt/β-catenin pathway leads to dysfunction of intestinal regeneration during necrotizing enterocolitis. Cell Death Dis 10(10):743

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Li B et al (2014) Early maternal separation induces alterations of colonic epithelial permeability and morphology. Pediatr Surg Int 30(12):1217–1222

    Article  CAS  PubMed  Google Scholar 

  63. Li B et al (2016) Endoplasmic reticulum stress is involved in the colonic epithelium damage induced by maternal separation. J Pediatr Surg 51(6):1001–1004

    Article  PubMed  Google Scholar 

  64. Okazaki T et al (2014) Inhibition of the dephosphorylation of eukaryotic initiation factor 2α ameliorates murine experimental colitis. Digestion 90(3):167–178

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Canadian Institutes of Health Research (CIHR) [Foundation Grant number 353857].

Author information

Authors and Affiliations

Authors

Contributions

EL, CL, BL: writing—original draft; AP: conceptualization, supervision, writing—review and editing.

Corresponding author

Correspondence to Agostino Pierro.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lau, E., Lee, C., Li, B. et al. Endoplasmic reticulum stress in the acute intestinal epithelial injury of necrotizing enterocolitis. Pediatr Surg Int 37, 1151–1160 (2021). https://doi.org/10.1007/s00383-021-04929-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-021-04929-8

Keywords

Navigation