Advertisement

Pediatric Surgery International

, Volume 34, Issue 5, pp 475–489 | Cite as

Surgical perspectives regarding application of biomaterials for the management of large congenital diaphragmatic hernia defects

  • Amulya K. Saxena
Review Article

Abstract

This review focuses on the surgical viewpoints on patch repairs in neonates with large congenital diaphragmatic hernia defects. The main focus  is on the various biomaterials that have been employed to date with regard to their source of origins, degradation properties as well as tissue integration characteristics. Further focus  is on the present knowledge on patch integration when biomaterials are placed in the diaphragmatic defect. The review will also look at the present evidence on the biomechanical characteristics of the most commonly used biomaterials and compares these materials to diaphragmatic tissue to offer more  insight on the present practice of patch repairs in large defects. Since tissue engineering and regenerative medicine has offered another dimension to diaphragmatic replacement, a detailed overview of this technology will be undertaken with regard to cell sourcing, scaffolds, in vitro versus in vivo implants as well as quality of tissue produced, to explore the limitations and the feasibility facing the scientific community in its clinical implementation of skeletal muscle-engineered tissue beyond laboratory research for diaphragmatic replacement.

Keywords

Congenital diaphragmatic hernia Prosthetic materials Recurrence Patch repair Biomaterials Tissue engineering Biomechanics 

Notes

Funding

This research was partly funded by the European Union within the 6th Framework Program (EuroSTEC; LSHC-CT-2006-037409).

Compliance with ethical standards

Conflict of interest

The author declares no conflict of interest.

Ethical approval

All international, national, and/or institutional guidelines for the care and use of animals were followed.

References

  1. 1.
    Arensman RM, Bambini DA, Chiu B (2005) Congenital diaphragmatic hernia and eventration. In: Ashcraft KW, Holcomb GW III, Patrick Murphy J (eds) Pediatric surgery, 4th edn. Elsevier Saunders, Philadelphia, pp 304–323Google Scholar
  2. 2.
    The Congenital Diaphragmatic Hernia Study Group (2007) Defect size determines survival in infants with congenital diaphragmatic hernia. Pediatrics 120:e651–657CrossRefGoogle Scholar
  3. 3.
    Newman KD, Anderson KD, Van Meurs K, Parson S, Loe W, Short B (1990) Extracorporeal membrane oxygenation and congenital diaphragmatic hernia: should any infant be excluded? J Pediatr Surg 25:1048–1052PubMedCrossRefGoogle Scholar
  4. 4.
    Stolar C, Dillon P, Reyes C (1998) Selective use of extracorporeal membrane oxygenation in the management of congenital diaphragmatic hernia. J Pediatr Surg 23:207–211CrossRefGoogle Scholar
  5. 5.
    Clark HC, Hardin WD, Hirschl RB et al (1998) Current surgical management of congenital diaphragmatic hernia: a report from the congenital diaphragmatic hernia study group. J Pediatr Surg 33:1004–1009PubMedCrossRefGoogle Scholar
  6. 6.
    Moss RL, Chen CM, Harrison MR (2001) Prosthetic patch durability in congenital diaphragmatic hernia: a long term follow-up study. J Pediatr Surg 36:152–154PubMedCrossRefGoogle Scholar
  7. 7.
    Vanamo K, Peltonen J, Rintala R et al (1996) Chest wall and spinal deformities in adults with congenital diaphragmatic defects. J Pediatr Surg 31:851–854PubMedCrossRefGoogle Scholar
  8. 8.
    Tsao K, Lally KP (2008) The Congenital Diaphragmatic Hernia Study Group: voluntary international registry. Semin Pediatr Surg 17:90–97PubMedCrossRefGoogle Scholar
  9. 9.
    Saxena AK, Marler J, Benvenuto M, Willital GH, Vacanti JP (1999) Skeletal muscle tissue engineering using isolated myoblasts on synthetic biodegradable polymers: preliminary studies. Tissue Eng 5:525–532PubMedCrossRefGoogle Scholar
  10. 10.
    Billroth T (1924) The medical sciences in the German Universities: a study, in history of civilization. (trans: Welch WH) Macmillan, New YorkGoogle Scholar
  11. 11.
    Chowbey P (2012) Endoscopic repair of abdominal wall hernias, 2nd edn. Byword books, DelhiGoogle Scholar
  12. 12.
    Greenberg JA. Clark RM (2009) Advances in suture material for obstetric and gynecologic surgery. Rev Obstet Gynecol 2:146–158PubMedPubMedCentralGoogle Scholar
  13. 13.
    LeBlanc KA (2003) Laparoscopic hernia surgery an operative guide, 1st edn. CRC Press, New OrleansCrossRefGoogle Scholar
  14. 14.
    Usher FC, Fries JG, Ochsner JL, Tuttle LL (1959) Marlex mesh, a new plastic mesh for replacing tissue defects. II. A new plastic mesh for replacing tissue defects. AMA Arch Surg 78:138–145PubMedCrossRefGoogle Scholar
  15. 15.
    Usher FC, Hill JR, Ochsner JL (1959) Hernia repair with Marlex mesh. A comparison of techniques. Surgery 46:718–728PubMedGoogle Scholar
  16. 16.
    Klinge U, Klosterhalfen B, Birkenhauer V, Junge K, Conze J, Schumpelick VJ (2002) Impact of polymer pore size on the interface scar formation in a rat model. Surg Res 103:208–214CrossRefGoogle Scholar
  17. 17.
    Elliott MP, Juler GL (1979) Comparison of Marlex mesh and microporous teflon sheets when used for hernia repair in the experimental animal. Am J Surg 137:342–344PubMedCrossRefGoogle Scholar
  18. 18.
    Murphy JL, Freeman JB, Dionne PG (1989) Comparison of Marlex and Gore-Tex to repair abdominal wall defects in the rat. Can J Surg 32:244–247PubMedGoogle Scholar
  19. 19.
    Sher W, Pollack D, Paulides CA, Matsumoto T (1980) Repair of abdominal wall defects: Gore-Tex vs. Marlex graft. Am Surg 46:618–623PubMedGoogle Scholar
  20. 20.
    Lamb JP, Vitale T, Kaminski DL (1983) Comparative evaluation of synthetic meshes used for abdominal wall replacement. Surgery 93:643–648PubMedGoogle Scholar
  21. 21.
    Pans A, Pierard GE (1992) A comparison of intraperitoneal prostheses for the repair of abdominal muscular wall defects in rats. Eur Surg Res 24:54–60PubMedCrossRefGoogle Scholar
  22. 22.
    Simmermacher RK, Van Der Lei B, Schakenraad JM, Bleichrodt RP (1991) Improved tissue ingrowth and anchorage of expanded polytetrafluoroethylene by perforation: an experimental study in the rat. Biomaterials 12:22–24PubMedCrossRefGoogle Scholar
  23. 23.
    Bellon JM, Contreras LA, Sabater C, Bujan J (1997) Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J Surg 1:402–406CrossRefGoogle Scholar
  24. 24.
    Utrera Gonzalez A, De La Portilla De Juan F, Carranza Albarran G (1999) Large incisional hernia repair using intraperitoneal placement of expanded polytetrafluoroethylene. Am J Surg 177:291–293PubMedCrossRefGoogle Scholar
  25. 25.
    Devine C, Hons B, McCollum C (2001) Heparin bonded Dacron or polytetrafluorethylene for femoropopliteal bypass grafting: a multicenter trial. J Vasc Surg 33:533PubMedCrossRefGoogle Scholar
  26. 26.
    Hernández-Richter T, Schardey HM, Wittmann F et al (2003) Rifampin and triclosan but not silver is effective in preventing bacterial infection of vascular dacron graft material. Eur J Vasc Endovasc Surg 26:550–557PubMedCrossRefGoogle Scholar
  27. 27.
    Schneider F, O’Connor S, Becquemin JP (2008) Efficacy of collagen silver coated polyester and rifampin-soaked vascular grafts to resist infection from MRSA and Escherichia coli in a dog model. Ann Vasc Surg 22:815–821PubMedCrossRefGoogle Scholar
  28. 28.
    Mitchell IC, Garcia NM, Barber R, Ahmad N, Hicks BA, Fischer AC (2008) Permacol: a potential biologic patch alternative in congenital diaphragmatic hernia repair. J Pediatr Surg 43:2161–2164PubMedCrossRefGoogle Scholar
  29. 29.
    Zogbi L (2008) The use of biomaterials to treat abdominal hernias. In: Pignatello R (ed) Biomaterials applications for nanomedicine, vol 18, 1st edn. InTech, Rijeka, Croatia, pp 359–382Google Scholar
  30. 30.
    Bekdash B, Singh B, Lakhoo K (2009) Recurrent late complications following congenital diaphragmatic hernia repair with prosthetic patches: a case series. J Med Case Rep 3:7237PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Van Der Lei B, Bleichrodt RP, Simmermacher RK, Van Schilfgaarde R (1989) Expanded polytetrafluoroethylene patch for the repair of large abdominal wall defects. Br J Surg 76:803–805PubMedCrossRefGoogle Scholar
  32. 32.
    Simmermacher RK, Schakenraad JM, Bleichrodt RP (1994) Reherniation after repair of the abdominal wall with expanded polytetrafluoroethylene. J Am Coll Surg 178:613–616PubMedGoogle Scholar
  33. 33.
    Mayer S, Decaluwe H, Ruol M, Manodoro S, Kramer M, Till H, Deprest J (2015) Diaphragm repair with a novel cross-linked collagen biomaterial in a growing rabbit model. PLoS One 10:e0132021PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Chaliha C, Khalid U, Campagna L, Digesu GA, Ajay B, Khullar V (2006) SIS graft for anterior vaginal wall prolapse repair—a case-controlled study. Int Urogynecol J Pelvic Floor Dysfunct 17:492–497PubMedCrossRefGoogle Scholar
  35. 35.
    Chen CCG, Ridgeway B, Paraiso MFR (2007) Biologic grafts and synthetic meshes in pelvic reconstructive surgery. Clin Obstet Gynecol 50:383–411PubMedCrossRefGoogle Scholar
  36. 36.
    Trabuco EC, Klingele CJ, Gebhart JB (2007) Xenograft use in reconstructive pelvic surgery: a review of the literature. Int Urogynecol J Pelvic Floor Dysfunct 18:555–563PubMedCrossRefGoogle Scholar
  37. 37.
    Hodde J (2006) Extracellular matrix as a bioactive material for soft tissue reconstruction. ANZ J Surg 76:1096–1100PubMedCrossRefGoogle Scholar
  38. 38.
    Clarke KM, Lantz GC, Salisbury SK, Badylak SF, Hiles MC, Voytik SL (1996) Intestine submucosa and polypropylene mesh for abdominal wall repair in dogs. J Surg Res 60:107–114PubMedCrossRefGoogle Scholar
  39. 39.
    Prevel CD, Eppley BL, Summerlin DJ, Jackson JR, McCarty M, Badylak SF (1995) Small intestinal submucosa: utilization for repair of rodent abdominal wall defects. Ann Plast Surg 35:374–380PubMedCrossRefGoogle Scholar
  40. 40.
    Badylak S, Kokini K, Tullius B, Whitson B (2001) Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 99:282–287PubMedCrossRefGoogle Scholar
  41. 41.
    Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R (2002) Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 103:190–202PubMedCrossRefGoogle Scholar
  42. 42.
    Bellon JM, Garcia-Carranza A, Jurado F, Garcia-Honduvilla N, Carrera-San Martin A, Bujan J (2001) Peritoneal regeneration after implant of a composite prosthesis in the abdominal wall. World J Surg 25:147–152PubMedCrossRefGoogle Scholar
  43. 43.
    Oliver RF, Barker H, Cooke A, Grant RA (1982) Dermal collagen implants. Biomaterials 3:38–40PubMedCrossRefGoogle Scholar
  44. 44.
    Abdi R, Smith RN, Makhlouf L et al (2002) The role of CC chemokine receptor 5 (CCR5) in islet allograft rejection. Diabetes 51:2489–2495PubMedCrossRefGoogle Scholar
  45. 45.
    Fedoseyeva EV, Kishimoto K, Rolls HK et al (2002) Modulation of tissue-specific immune response to cardiac myosin can prolong survival of allogeneic heart transplants. J Immunol 169:1168–1174PubMedCrossRefGoogle Scholar
  46. 46.
    Badylak SF (1993) Small intestinal submucosa (SIS): a biomaterial conducive to smart tissue remodeling. In: Bell E (ed) Tissue engineering: current perspectives. Burkhauser, Cambridge, pp 179–189CrossRefGoogle Scholar
  47. 47.
    Zheng F, Lin Y, Verbeken E et al (2004) Host response after reconstruction of abdominal wall defects with porcine dermal collagen in a rat model. Am J Obstet Gynecol 191:1961–1970PubMedCrossRefGoogle Scholar
  48. 48.
    Sternschuss G, Ostergard DR, Patel H (2012) Post-implantation alterations of polypropylene in the human. J Urol 188:27–32PubMedCrossRefGoogle Scholar
  49. 49.
    Klinge U, Junge K, Stumpf M, Ap AP, Klosterhalfen B (2002) Functional and morphological evaluation of a low-weight, monofilament polypropylene mesh for hernia repair. J Biomed Mater Res 63:129–136PubMedCrossRefGoogle Scholar
  50. 50.
    Bringman S, Wollert S, Osterberg J, Smedberg S, Granlund H, Heikkinen TJ (2006) Three-year results of a randomized clinical trial of lightweight or standard polypropylene mesh in Lichtenstein repair of primary inguinal hernia. Br J Surg 93:1056–1059PubMedCrossRefGoogle Scholar
  51. 51.
    Tyrell J, Silberman H, Chandrasoma P, Niland J, Shull J (1989) Absorbable versus permanent mesh in abdominal operations. Surg Gynecol Obstet 168:227–232PubMedGoogle Scholar
  52. 52.
    Law NW, Ellis H (1991) A comparison of polypropylene mesh and expanded polytetrafluoroethylene patch for the repair of contaminated abdominal wall defects—an experimental study. Surgery 109:652–655PubMedGoogle Scholar
  53. 53.
    Bellon JM, Bujan J, Contreras L, Hernando A (1995) Integration of biomaterials implanted into abdominal wall: process of scar formation and macrophage response. Biomaterials 16:381–387PubMedCrossRefGoogle Scholar
  54. 54.
    Gao M, Han J, Tian J, Yang K (2010) Vypro II mesh for inguinal hernia repair: a meta analysis of randomized controlled trials. Ann Surg 251:838–842PubMedCrossRefGoogle Scholar
  55. 55.
    Cobb WS, Kercher KW, Heniford BT (2005) The argument for lightweight polypropylene mesh in hernia repair. Surg Innov 12:63–69PubMedCrossRefGoogle Scholar
  56. 56.
    Jacob BP, Hogle NJ, Durak E, Kim T, Fowler DL (2007) Tissue ingrowth and bowel adhesion formation in an animal comparative study: polypropylene versus proceed versus parietex composite. Surg Endosc 21:629–633PubMedCrossRefGoogle Scholar
  57. 57.
    Junge K, Binnebosel M, Rosch R et al (2009) Adhesion formation of a polyvinylidenfluoride/polypropylene mesh for intra-abdominal placement in a rodent animal model. Surg Endosc 23:327–333PubMedCrossRefGoogle Scholar
  58. 58.
    Binnebösel M, Klink CD, Otto J, Conze J, Jansen PL, Anurov M, Schumpelick V, Junge K (2010) Impact of mesh positioning on foreign body reaction and collagenous ingrowth in a rabbit model of open incisional hernia repair. Hernia 14:71–77PubMedCrossRefGoogle Scholar
  59. 59.
    Bellón JM, Bujan J, Contreras L, Hernando A, Jurado F (1994) Macrophage response to experimental implantation of poly-propylene prostheses. Eur Surg Res 26:46–53PubMedGoogle Scholar
  60. 60.
    Aramayo ALG, Lopes Filho Gde J, Barbosa Cde A, Amaral Vda F, Costa LA (2013) Abdominal wall healing in incisional hernia using different biomaterials in rabbits. Acta Cir Bras 28:307–316PubMedCrossRefGoogle Scholar
  61. 61.
    Zogbi L, Portella AO, Trindade MR, Trindade EN (2010) Retraction and fibroplasia in a polypropylene prosthesis: experimental study in rats. Hernia 14:291–298PubMedCrossRefGoogle Scholar
  62. 62.
    Campbell JB, Bassett CAL, Robertson JB (1958) Clinical use of freeze-dried human dura mater. J Neurosurg 15:207–214PubMedCrossRefGoogle Scholar
  63. 63.
    Jarrell MA, Malinin TI, Averette HE et al (1987) Human dura mater allografts in repair of pelvic floor and abdominal wall defects. Obstet Gynecol 70:280–285PubMedGoogle Scholar
  64. 64.
    Saxena AK, Hülskamp G, Schleef J, Schaarschmidt K, Harms E, Willital GH (2002) Gastroschisis: a 15-year, single-center experience. Pediatr Surg Int 18:420–424PubMedCrossRefGoogle Scholar
  65. 65.
    Saxena A, Willital GH (2002) Omphalocele: clinical review and surgical experience using dura patch grafts. Hernia 6:73–78PubMedCrossRefGoogle Scholar
  66. 66.
    Laurentaci G, Occhioogrosso M, Favoino B (1982) In vitro inhibition of rat serum complement activity by an extract of lyophilized human dura mater. J Neurosurg Sci 26:219–221PubMedGoogle Scholar
  67. 67.
    Asselmeier MA, Caspari RB (1993) A review of allograft processing and sterilization techniques and their role in transmission of HIV. Am J Sports Med 21:170–175PubMedCrossRefGoogle Scholar
  68. 68.
    Janssen RS, Schonberger LB (1991) Creutzfeldt–Jakob Disease from allogeneic dura: a review of risks and safety. J Oral Maxillofac Surg 49:274–275CrossRefGoogle Scholar
  69. 69.
    Cantore G, Guidetti B, Delfini R (1987) Neurosurgical use of human dura mater sterilized by gamma rays and stored in alcohol: long-term results. J Neurosurg 66:93–95PubMedCrossRefGoogle Scholar
  70. 70.
    Cali I, Cohen ML, Haïk S, Parchi P, Giaccone G, Collins SJ et al (2018) Iatrogenic Creutzfeldt–Jakob disease with Amyloid-β pathology: an international study. Acta Neuropathol Commun 6:5PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Bendavid R (2001) Abdominal wall hernias: principles and management. In Bendavid R (ed) Springer-Verlag, BerlinCrossRefGoogle Scholar
  72. 72.
    Waler C, Sigbritt K (2002) Assessment of thermal and thermo-oxidative stability of multi-extruded recycled PP, HDPE and a blend thereof. Polym Degrad Stab 78:385–391CrossRefGoogle Scholar
  73. 73.
    Wood AM, Cozad MJ, Grant DA, Ostdiek MA, Bachman SL, Grant SA (2013) Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient. J Mater Sci Mater Med 24:1113–1122PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gonzalez R, Fugate K, McClusky D 3rd et al (2005) Relationship between tissue ingrowth and mesh contraction. World J Surg 29:1038–1043PubMedCrossRefGoogle Scholar
  75. 75.
    Morris-Stiff GJ, Hughes LE (1998) The outcomes of non-absorbable mesh placed within the abdominal cavity: literature review and clinical experience. J Am Coll Surg 186:352–367PubMedCrossRefGoogle Scholar
  76. 76.
    Riepe G, Loos J, Imig H et al (1997) Long-term in vivo alterations of polyester vascular grafts in humans. Eur J Vasc Endovasc Surg 13:540–548PubMedCrossRefGoogle Scholar
  77. 77.
    Melman L et al (2011) Early biocompatibility of crosslinked and non-crosslinked biologic meshes in a porcine model of ventral hernia repair. Hernia 15:157–164PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Mimura KKO, Moraes AR, Miranda AC, Greco R, Ansari T, Paul Sibbons P et al (2016) Mechanisms underlying heterologous skin scaffold-mediated tissue remodeling. Sci Rep 6:35074PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sung HW, Chang WH, Ma CY, Lee MH (2003) Crosslinking of biological tissues using genipin and/or carbodiimide. J Biomed Mater Res A 64:427–438PubMedCrossRefGoogle Scholar
  80. 80.
    Greco K, Francis L, Somasundaram M et al (2015) Characterisation of porcine dermis scaffolds decellularised using a novel non-enzymatic method for biomedical applications. J Biomater App 30:239–253CrossRefGoogle Scholar
  81. 81.
    Jones JA, Chang DT, Meyerson H et al (2007) Proteomic analysis and quantification of cytokines and chemokines from biomaterial surface-adherent macrophages and foreign body giant cells. J Biomed Mater Res Part A 83:585–596CrossRefGoogle Scholar
  82. 82.
    Luttikhuizen DT, Dankers PYW, Harmsen MC, Van Luyn MJA (2007) Material dependent differences in inflammatory gene expression by giant cells during the foreign body reaction. J Biomed Mater Res Part A 83:879–886CrossRefGoogle Scholar
  83. 83.
    Courtman DW, Errett BF, Wilson GJ (2001) The role of crosslinking in modification of the immune response elicited against xenogenic vascular acellular matrices. J Biomed Mater Res 55:576–586PubMedCrossRefGoogle Scholar
  84. 84.
    Liang HC, Chang Y, Hsu CK, Lee MH, Sung HW (2004) Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern. Biomaterials 25:3541–3552PubMedCrossRefGoogle Scholar
  85. 85.
    Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM (2008) Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 14:1835–1842PubMedCrossRefGoogle Scholar
  86. 86.
    Breuing KH, Warren SM (2005) Immediate bilateral breast reconstruction with implants and inferolateral AlloDerm slings. Ann Plast Surg 55:232–239PubMedCrossRefGoogle Scholar
  87. 87.
    Zienowicz RJ, Karacaoglu E (2007) Implant-based breast reconstruction with allograft. Plast Reconstr Surg 120:373–381PubMedCrossRefGoogle Scholar
  88. 88.
    Sbitany H, Sandeen SN, Amalfi AN et al (2009) Acellular dermis-assisted prosthetic breast reconstruction versus complete submuscular coverage: a head-to-head comparison of outcomes. Plast Reconstr Surg 124:1735–1740PubMedCrossRefGoogle Scholar
  89. 89.
    Gamboa-Bobadilla GM (2006) Implant breast reconstruction using acellular dermal matrix. Ann Plast Surg 56:22–25PubMedCrossRefGoogle Scholar
  90. 90.
    Butterfield JL (2013) 440 consecutive immediate, implant-based, single-surgeon breast reconstructions in 281 patients: a comparison of early outcomes and costs between SurgiMend fetal bovine and AlloDerm human cadaveric acellular dermal matrices. Plast Reconstr Surg 131:940–951PubMedCrossRefGoogle Scholar
  91. 91.
    Dieterich M, Paepke S, Zwiefel K et al (2013) Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases. Plast Reconstr Surg 132:8e–19ePubMedCrossRefGoogle Scholar
  92. 92.
    United States Pharmacopeial Convention (2002) 1211: sterility testing. United States pharmacopeia and national formulary (USP25-NF20). United States Pharmacopeial Convention, RockvilleGoogle Scholar
  93. 93.
    Centers for Disease Control and Prevention (CDC) (2002) Update: allograft-associated bacterial infections: United States, 2002. MMWR Morb Mortal Wkly Rep 51:207–210Google Scholar
  94. 94.
    Liu AS, Kao HK, Reish RG et al (2011) Postoperative complications in prosthesis-based breast reconstruction using acellular dermal matrix. Plast Reconstr Surg 127:1755–1762PubMedCrossRefGoogle Scholar
  95. 95.
    Antony AK, McCarthy CM, Cordeiro PG et al (2010) Acellular human dermis implantation in 153 immediate two-stage tissue expander breast reconstructions: determining the incidence and significant predictors of complications. Plast Reconstr Surg 125:1606–1614PubMedCrossRefGoogle Scholar
  96. 96.
    Bluebond-Langner R, Keifa ES, Mithani S et al (2008) Recurrent abdominal laxity following interpositional human acellular dermal matrix. Ann Plast Surg 60:76–80PubMedCrossRefGoogle Scholar
  97. 97.
    Lee EI, Chike-Obi CJ, Gonzalez P et al (2009) Abdominal wall repair using human acellular dermal matrix: a follow-up study. Am J Surg 198:650–657PubMedCrossRefGoogle Scholar
  98. 98.
    Mazzini DL, Mantovani M (1999) Fechamento da parede abdominal com afastamento parcial das bordas da aponeurose utilizando sobreposição com telas de Vicryl ou Marlex em ratos. Acta Cir Bras 14:28–34CrossRefGoogle Scholar
  99. 99.
    Bellon JM, Contreras LA, Sabater C, Bujan J (1997) Pathologic and clinical aspects of repair of large incisional hernias after implant of a polytetrafluoroethylene prosthesis. World J Surg 21:402–406PubMedCrossRefGoogle Scholar
  100. 100.
    Schumpelick VE, Nyhus LME (2004) Meshes: benefits and risks. In Schumpelick LN (ed) Springer-Verlag, BerlinCrossRefGoogle Scholar
  101. 101.
    Maurer PK, Mc Donald JV (1985) Vicryl (Polyglactin 910) mesh as a dural substitute. J Neurosurg 63:448–452PubMedCrossRefGoogle Scholar
  102. 102.
    Meddings N, Scott R, Bullock R, French DA, Hide TA, Gorham SD (1992) Collagen vicryl—a new dural prothesis. Acta Neurochir (Wien) 117:53–58CrossRefGoogle Scholar
  103. 103.
    Ramadwar RH, Carachi R, Young DG (1997) Collagen-coated Vicryl mesh is not a suitable material for repair of diaphragmatic defects. J Pediatr Surg 32:1708–1710PubMedCrossRefGoogle Scholar
  104. 104.
    Al-Iede MM, Karpelowsky J, Fitzgerald DA (2016) Recurrent diaphragmatic hernia: modifiable and non-modifiable risk factors. Pediatr Pulmonol 51:394–401PubMedCrossRefGoogle Scholar
  105. 105.
    Riehle KJ, Magnuson DK, Waldhausen JH (2007) Low recurrence rate after Gore-Tex/Marlex composite patch repair for posterolateral congenital diaphragmatic hernia. J Pediatr Surg 42:1841–1844PubMedCrossRefGoogle Scholar
  106. 106.
    Jancelewicz T, Vu LT, Keller RL, Bratton B, Lee H, Farmer D, Harrison M, Miniati D, Mackenzie T, Hirose S, Nobuhara K (2010) Long-term surgical outcomes in congenital diaphragmatic hernia: observations from a single institution. J Pediatr Surg 45:155–160PubMedCrossRefGoogle Scholar
  107. 107.
    Anderson JM (2001) Biological response to materials. Annu Rev Mater Res 31:81–110CrossRefGoogle Scholar
  108. 108.
    Santambrogio L (2015) Biomaterials in regenerative medicine and the immune system, 1st edn. Springer International Publishing Switzerland, ChamCrossRefGoogle Scholar
  109. 109.
    Tang L, Ugarova TP, Plow EF, Eaton JW (1996) Molecular determinates of acute inflammatory response to biomaterials. J Clin Investig 97:1329–13234PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Busuttil SJ, Ploplis VA, Castellino FJ, Tang L, Eaton JW, Plow EF (2004) A central role for plasminogen in the inflammatory response to biomaterials. J Thromb Haemost 2:1798–1805PubMedCrossRefGoogle Scholar
  111. 111.
    Earle DB, Mark LA (2008) Prosthetic material in inguinal hernia repair: how do i choose? Surg Clin N Am 88:179–201PubMedCrossRefGoogle Scholar
  112. 112.
    Ramshaw B, Bachman S (2007) Surgical materials for ventral hernia repair. Gen Surg News 34:1–15Google Scholar
  113. 113.
    Anderson JM, Rodriguez A, Chang DT (2008) Foreign body reaction to biomaterials. Semin Immunol 20:86–100PubMedCrossRefGoogle Scholar
  114. 114.
    Schumpelick V, Fitzgibbons RJ (2010) Hernia repair sequelae, 1st edn. Springer, Berlin/HeidelbergCrossRefGoogle Scholar
  115. 115.
    Saxena AK, Biro E, Sommer G, Ainoedhofer H, Kuess A, Holzapfel G (2011) EuroSTEC EU project—biomechanical investigation in diaphragmatic patch repairs. In: European Union FP6-Life Science Project 37409 report. BrusselsGoogle Scholar
  116. 116.
    Saxena AK (2014) Dome-shaped patch offers optimal biomechanics for repair of large defects in congenital diaphragmatic hernia. Acta Medica Medianae 53:42–45CrossRefGoogle Scholar
  117. 117.
    Saxena AK, Willital GH, Vacanti JP (2001) Vascularized three-dimensional skeletal muscle tissue-engineering. Biomed Mater Eng 11:275–281PubMedGoogle Scholar
  118. 118.
    Dennis R, Kosnik P, Gilbert M (2001) Excitability and contractility of skeletal muscle engineered from primary cultures and cell lines. Am J Physiol Cell Physiol 280:C288–C295PubMedCrossRefGoogle Scholar
  119. 119.
    Liu G, Mac Gabhann F, Popel A (2012) Effects of fiber type and size on the heterogeneity of oxygen distribution in exercising skeletal muscle. PLoS ONE 7:e44375PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Corona B, Ward C, Baker H, Walters T, Christ G (2014) Implantation of in vitro tissue engineered muscle repair constructs and bladder acellular matrices partially restore in vivo skeletal muscle function in a rat model of volumetric muscle loss injury. Tissue Eng Part A 20:705–715PubMedGoogle Scholar
  121. 121.
    Aärimaa V, Kääriäinen M, Vaittinen S, Tanner J, Järvinen T, Best T et al (2004) Restoration of myofiber continuity after transection injury in the rat soleus. Neuromuscul Disord 14:421–428PubMedCrossRefGoogle Scholar
  122. 122.
    Rouwkema J, Gibbs S, Lutolf M, Martin I, Vunjak-Novakovic G, Malda J (2011) In vitro platforms for tissue engineering: implications for basic research and clinical translation. J Tissue Eng Regen Med 5:e164–167CrossRefGoogle Scholar
  123. 123.
    Karande T, Ong J, Agrawal C (2004) Diffusion in musculoskeletal tissue engineering scaffolds: design issues related to porosity, permeability, architecture, and nutrient mixing. Ann Biomed Eng 32:1728–1743PubMedCrossRefGoogle Scholar
  124. 124.
    Griffith C, Miller C, Sainson R, Calvert J, Jeon N, Hughes C et al (2005) Diffusion limits of an in vitro thick prevascularized tissue. Tissue Eng 11:257–266PubMedCrossRefGoogle Scholar
  125. 125.
    Radisic M, Yang L, Boublik J, Cohen R, Langer R, Freed L et al (2004) Medium perfusion enables engineering of compact and contractile cardiac tissue. Am J Physiol Heart Circ Physiol 286:H507-516CrossRefGoogle Scholar
  126. 126.
    Miller J, Stevens K, Yang M, Baker B, Nguyen D-HT, Cohen D et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11:768–774PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kolesky D, Truby R, Gladman A, Busbee T, Homan K, Lewis J (2014) 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater 26:3124–3130PubMedCrossRefGoogle Scholar
  128. 128.
    Leong M, Toh J, Du C, Narayanan K, Lu H, Lim T et al (2013) Patterned prevascularised tissue constructs by assembly of polyelectrolyte hydrogel fibres. Nat Commun 4:2353PubMedCrossRefGoogle Scholar
  129. 129.
    Murphy M, Lawson J, Mathew S, Hutcheson D, Kardon G (2011) Satellite cells, connective tissue fibroblasts and their interactions are crucial for muscle regeneration. Development 138:3625–3637PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Koffler J, Kaufman-Francis K, Shandalov Y, Yulia S, Egozi D, Dana E et al (2011) Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. Proc Natl Acad Sci USA 108:14789–14794PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Haraguchi Y, Shimizu T, Sasagawa T, Sekine H, Sakaguchi K, Kikuchi T et al (2012) Fabrication of functional three-dimensional tissues by stacking cell sheets in vitro. Nat Protoc 7:850–858PubMedCrossRefGoogle Scholar
  132. 132.
    Yamato M, Akiyama Y, Kobayashi J, Yang J, Kikuchi A, Okano T (2007) Temperature-responsive cell culture surfaces for regenerative medicine with cell sheet engineering. Prog Polym Sci 32:1123–1133CrossRefGoogle Scholar
  133. 133.
    Kilarski W, Samolov B, Petersson L, Kvanta A, Gerwins P (2009) Biomechanical regulation of blood vessel growth during tissue vascularization. Nat Med 15:657–664PubMedCrossRefGoogle Scholar
  134. 134.
    Boerckel J, Uhrig B, Willett N, Huebsch N, Guldberg R (2011) Mechanical regulation of vascular growth and tissue regeneration in vivo. Proc Natl Acad Sci USA 108:E674–680CrossRefGoogle Scholar
  135. 135.
    Cheng G, Liao S, Kit Wong H, Lacorre D, di Tomaso E, Au P et al (2011) Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118:4740–4749PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Saxena AK, Kofler K, Ainödhofer H, Höllwarth ME (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13:1037–1043PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Pediatric Surgery, Chelsea Children’s Hospital, Chelsea and Westminster Hospital NHS Foundation TrustImperial College LondonLondonUK

Personalised recommendations