Skip to main content
Log in

Effect of Perflubron-induced lung growth on pulmonary vascular remodeling in congenital diaphragmatic hernia

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

Congenital diaphragmatic hernia (CDH) involves lung hypoplasia and pulmonary hypertension (PH). Post-natal Perflubron ventilation induces lung growth. This phenomenon is called Perflubon-induced lung growth (PILG). However, it does not appear to ameliorate PH in CDH. We aim to determine the effect of PILG on pulmonary vascular remodeling in neonates with CDH and PH requiring extracorporeal membrane oxygenation (ECMO).

Methods

Lung tissue from four patients was obtained, three treated with PILG + ECMO, and one maintained on conventional ventilation + ECMO (control). The distribution of collagen was assessed with Masson’s trichrome stain. Immunohistochemistry was done to assess cell proliferation and immunofluorescence to assess vascular morphology.

Results

Comparing PILG vs. control, there was an increase in vessel wall diameter (6.85 μm, 10.28 μm, and 10.35 μm vs. 4.34 μm), increase in collagen thickness in two PILG patients (35.66 μm, 14.23 μm, and 38.46 μm vs. 22.16 μm), and decrease in lumen diameter despite similar total area (48.99 μm, 41.74 μm, and 36.32 μm vs. 51.56 μm) for each PILG patient vs. the control patient, respectively.

Conclusion

PILG does not appear to improve pulmonary vascular remodeling that occurs with PH. The findings are descriptive and will require larger samples to validate the significance of the findings. Overall, further studies will be required to identify the mechanistic causes of PH in CDH to create effective treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lally KP (2002) Congenital diaphragmatic hernia. Curr Opin Pediatr 14:486–490

    Article  PubMed  Google Scholar 

  2. Congenital Diaphragmatic Hernia Study G, Morini F, Valfre L et al (2013) Congenital diaphragmatic hernia: defect size correlates with developmental defect. J Pediatr Surg 48:1177–1182

    Article  Google Scholar 

  3. Wynn J, Krishnan U, Aspelund G et al (2013) Outcomes of congenital diaphragmatic hernia in the modern era of management. J Pediatr 163:114–119 (e111)

    Article  PubMed  PubMed Central  Google Scholar 

  4. Dekoninck P, Gratacos E, Van Mieghem T et al (2011) Results of fetal endoscopic tracheal occlusion for congenital diaphragmatic hernia and the set up of the randomized controlled TOTAL trial. Early Hum Dev 87:619–624

    Article  PubMed  Google Scholar 

  5. Nobuhara KK, Fauza DO, DiFiore JW et al (1998) Continuous intrapulmonary distension with perfluorocarbon accelerates neonatal (but not adult) lung growth. J Pediatr Surg 33:292–298

    Article  CAS  PubMed  Google Scholar 

  6. Bütter A, Piedboeuf B, Flageole H et al (2005) Postnatal pulmonary distension for the treatment of pulmonary hypoplasia: pilot study in the neonatal piglet model. J Pediatr Surg 40(5):826–831

    Article  PubMed  Google Scholar 

  7. Hirschl RB, Philip WF, Glick L et al (2003) A prospective, randomized pilot trial of perfluorocarbon-induced lung growth in newborns with congenital diaphragmatic hernia. J Pediatr Surg 38:283–289 (discussion 283–289)

    Article  PubMed  Google Scholar 

  8. Mychaliska G, Bryner B, Dechert R et al (2015) Safety and efficacy of perflubron-induced lung growth in neonates with congenital diaphragmatic hernia: results of a prospective randomized trial. J Pediatr Surg 50:1083–1087

    Article  PubMed  Google Scholar 

  9. Taira Y, Yamataka T, Miyazaki E et al (1998) Comparison of the pulmonary vasculature in newborns and stillborns with congenital diaphragmatic hernia. Pediatr Surg Int 14:30–35

    Article  CAS  PubMed  Google Scholar 

  10. Stenmark KR, Mecham RP (1997) Cellular and molecular mechanisms of pulmonary vascular remodeling. Annu Rev Physiol 59:89–144

    Article  CAS  PubMed  Google Scholar 

  11. Faury G, Pezet M, Knutsen RH, Heximer SP, McLean SE, Minkes RK, Blumer KJ, Kovacs A, Kelly DP, Starcher B, Mecham RP (2003) Developmental adaptation of the mouse cardiovascular system to elastin haploinsufficiency. J Clin Invest 112(9):1419–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shifren A, Durmowicz AG, Knutsen RH, Faury G, Mecham RP (2008) Elastin insufficiency predisposed to elevated pulmonary circulatory pressures through changes in elastic artery structure. J Appl Physiol 105(5):1610–1619

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC, Grimminger F, Jones PL, Maitland ML, Michelakis ED, Morrell NW, Newman JH, Rabinovitch M, Schermuly R, Stenmark KR, Voelkel NF, Yuan JX, Humbert M (2009) Inflammation, growth factors, and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    Article  CAS  PubMed  Google Scholar 

  14. Stenmark KR, Fagan KA, Frid MG (2006) Hypoxia-induced pulmonary vascular remodeling cellular and molecular mechanisms. Circ Res 99:675–691

    Article  CAS  PubMed  Google Scholar 

  15. Fleck S, Bautista G, Keating SM et al (2013) Fetal production of growth factors and inflammatory mediators predicts pulmonary hypertension in congenital diaphragmatic hernia. Pediatr Res 74:290–298

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schaible T, Veit M, Tautz J et al (2011) Serum cytokine levels in neonates with congenital diaphragmatic hernia. Klin Padiatr 223:414–418

    Article  CAS  PubMed  Google Scholar 

  17. Dillon PW, Cilley RE, Mauger D et al (2004) The relationship of pulmonary artery pressure and survival in congenital diaphragmatic hernia. J Pediatr Surg 39:307–312 (discussion 307–312)

    Article  PubMed  Google Scholar 

  18. Congenital Diaphragmatic Hernia Study Group (2001) Estimating disease severity of congenital diaphragmatic hernia in the first 5 minutes of life. J Pediatr Surg 36:141–145

    Article  Google Scholar 

  19. Jakkula M, Le Cras TD, Gebb S et al (2000) Inhibition of angiogenesis decreases alveolarization in thes developing rat lung. Am J Physiol Lung Cell Mol Physiol 279(3):L600–L607

    CAS  PubMed  Google Scholar 

  20. Victoria T, Bebbington MW, Danzer E et al (2012) Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia. Prenat Diagn 32(8):715–723

    Article  PubMed  Google Scholar 

  21. Haworth SG (1995) Development of the normal and hypertensive pulmonary vasculature. Exp Physiol 80:843–853

    Article  CAS  PubMed  Google Scholar 

  22. Schoof E, von der Hardt K, Kandler MA et al (2002) Aerosolized perfluorocarbon reduces adhesion molecule gene expression and neutrophil sequestration in acute respiratory distress. Eur J Pharmacol 457:195–200

    Article  CAS  PubMed  Google Scholar 

  23. Lehmler HJ (2008) Anti-inflammatory effects of perfluorocarbon compounds. Expert Rev Respir Med 2:273–289

    Article  CAS  PubMed  Google Scholar 

  24. Croce MA, Fabian TC, Patton Jr JH et al (1998) Partial liquid ventilation decreases the inflammatory response in the alveolar environment of trauma patients. J Trauma 45:273–280 (discussion 280–272)

    Article  CAS  PubMed  Google Scholar 

  25. Rotta AT, Steinhorn DM (1998) Partial liquid ventilation reduces pulmonary neutrophil accumulation in an experimental model of systemic endotoxemia and acute lung injury. Crit Care Med 26:1707–1715

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean E. McLean.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Phillips, M.R., Bryner, B. et al. Effect of Perflubron-induced lung growth on pulmonary vascular remodeling in congenital diaphragmatic hernia. Pediatr Surg Int 32, 583–590 (2016). https://doi.org/10.1007/s00383-016-3887-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-016-3887-0

Keywords

Navigation