Skip to main content

Advertisement

Log in

Dynamic pathology for circulating free DNA in a dextran sodium sulfate colitis mouse model

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Purpose

In sepsis, circulating free DNA (cf-DNA) is increased, and is a marker of severity and prognosis of septic patients. This study aimed to evaluate cf-DNA in a dextran sodium sulfate-induced colitis mouse model, and its clinical implications.

Methods

Dynamic pathology of the cecum wall in the DSS-induced colitis mouse model was analyzed using multiphoton microscopy (MPM). Plasma cf-DNA concentrations in colitis mouse were quantified using PicoGreen dsDNA Assay Kit. Plasma cf-DNA was also measured in 123 human ulcerative colitis (UC) patients [mean age: 35.9 years (3–75 years) with 20 pediatric patients] to assess its relationships with clinical severity and Matt’s grade.

Results

Real-time images of cf-DNA were detected in the colitis model. The amount of labeled cf-DNA in the circulation of the colitis mice group was significantly higher compared with that in the control group (P < 0.05). In human UC blood samples, plasma cf-DNA concentrations in UC patients were significantly positively correlated with the clinical severity of UC and Matt’s grade (P < 0.05, P < 0.05, respectively).

Conclusions

Using MPM, we observed and analyzed real-time images of cf-DNA in a colitis mouse model. Plasma cf-DNA is a potential non-invasive blood marker for reflecting clinical severity and mucosal damage in UC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nakahira K, Kyung SY, Rogers AJ et al (2013) Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med 10(12):e1001577 (discussion e1001577)

    Article  PubMed Central  PubMed  Google Scholar 

  2. Rhodes A, Cecconi M (2012) Cell-free DNA and outcome in sepsis. Crit Care 16(6):170

    Article  PubMed Central  PubMed  Google Scholar 

  3. Huttunen R, Kuparinen T, Jylhava J et al (2011) Fatal outcome in bacteremia is characterized by high plasma cell free DNA concentration and apoptotic DNA fragmentation: a prospective cohort study. PLoS One 6(7):e21700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Lo YM, Rainer TH, Chan LY et al (2000) Plasma DNA as a prognostic marker in trauma patients. Clin Chem 46(3):319–323

    CAS  PubMed  Google Scholar 

  5. Rainer TH, Wong KS, Lam W et al (2007) Comparison of plasma beta-globin DNA and S-100 protein concentrations in acute stroke. Clin Chim Acta 376(1–2):190–196

    Article  CAS  PubMed  Google Scholar 

  6. Elshimali YI, Khaddour H, Sarkissyan M et al (2013) The clinical utilization of circulating cell free DNA (CCFDNA) in blood of cancer patients. Int J Mol Sci 14(9):18925–18958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Butt AN, Swaminathan R (2008) Overview of circulating nucleic acids in plasma/serum. Ann N Y Acad Sci 1137:236–242

    Article  CAS  PubMed  Google Scholar 

  8. Brinkmann V, Reichard U, Goosmann C et al (2004) Neutrophil extracellular traps kill bacteria. Science 303(5663):1532–1535

    Article  CAS  PubMed  Google Scholar 

  9. Yipp BG, Petri B, Salina D et al (2012) Infection-induced NETosis is a dynamic process involving neutrophil multitasking in vivo. Nat Med 18(9):1386–1393

    Article  CAS  PubMed  Google Scholar 

  10. Menegazzi R, Decleva E, Dri P (2012) Killing by neutrophil extracellular traps: fact or folklore? Blood 119(5):1214–1216

    Article  CAS  PubMed  Google Scholar 

  11. Obermayer A, Stoiber W, Krautgartner WD et al (2014) New aspects on the structure of neutrophil extracellular traps from chronic obstructive pulmonary disease and in vitro generation. PLoS One 9(5):e97784

    Article  PubMed Central  PubMed  Google Scholar 

  12. Savchenko AS, Inoue A, Ohashi R et al (2011) Long pentraxin 3 (PTX3) expression and release by neutrophils in vitro and in ulcerative colitis. Pathol Int 61(5):290–297

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka K, Toiyama Y, Okugawa Y et al (2014) In vivo optical imaging of cancer metastasis using multiphoton microscopy: a short review. Am J Trans Res 6(3):179–187

    CAS  Google Scholar 

  14. Tanaka K, Toiyama Y, Inoue Y et al (2013) Intravital imaging of gastrointestinal diseases in preclinical models using two-photon laser scanning microscopy. Surg Today 43(2):123–129

    Article  PubMed  Google Scholar 

  15. Tanaka K, Morimoto Y, Toiyama Y et al (2012) Intravital dual-colored visualization of colorectal liver metastasis in living mice using two photon laser scanning microscopy. Microsc Res Tech 75(3):307–315

    Article  PubMed  Google Scholar 

  16. Morimoto Y, Tanaka K, Toiyama Y et al (2011) Intravital three-dimensional dynamic pathology of experimental colitis in living mice using two-photon laser scanning microscopy. J Gastrointest Surg 15(10):1842–1850

    Article  PubMed  Google Scholar 

  17. Koike Y, Tanaka K, Okugawa Y et al (2011) In vivo real-time two-photon microscopic imaging of platelet aggregation induced by selective laser irradiation to the endothelium created in the beta-actin-green fluorescent protein transgenic mice. J Thromb Thrombolysis 32(2):138–145

    Article  CAS  PubMed  Google Scholar 

  18. Toiyama Y, Mizoguchi A, Okugawa Y et al (2010) Intravital imaging of DSS-induced cecal mucosal damage in GFP-transgenic mice using two-photon microscopy. J Gastroenterol 45(5):544–553

    Article  PubMed  Google Scholar 

  19. Ustione A, Piston DW (2011) A simple introduction to multiphoton microscopy. J Microsc 243(3):221–226

    Article  CAS  PubMed  Google Scholar 

  20. Pittet MJ, Weissleder R (2011) Intravital imaging. Cell 147(5):983–991

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka K, Morimoto Y, Toiyama Y et al (2012) In vivo time-course imaging of tumor angiogenesis in colorectal liver metastases in the same living mice using two-photon laser scanning microscopy. J Oncol 2012:265487. doi:10.1155/2012/265487

  22. Satsangi J, Silverberg MS, Vermeire S et al (2006) The Montreal classification of inflammatory bowel disease: controversies, consensus, and implications. Gut 55(6):749–753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Brill A, Fuchs TA, Savchenko AS et al (2012) Neutrophil extracellular traps promote deep vein thrombosis in mice. J Thromb Haemost 10(1):136–144

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Fuchs TA, Brill A, Duerschmied D et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107(36):15880–15885

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Doring Y, Manthey HD, Drechsler M et al (2012) Auto-antigenic protein-DNA complexes stimulate plasmacytoid dendritic cells to promote atherosclerosis. Circulation 125(13):1673–1683

    Article  PubMed  Google Scholar 

  26. Dubois AV, Gauthier A, Brea D et al (2012) Influence of DNA on the activities and inhibition of neutrophil serine proteases in cystic fibrosis sputum. Am J Respir Cell Mol Biol 47(1):80–86

    Article  CAS  PubMed  Google Scholar 

  27. Cools-Lartigue J, Spicer J, McDonald B et al (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458

    Article  CAS  PubMed Central  Google Scholar 

  28. Saffarzadeh M, Juenemann C, Queisser MA et al (2012) Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS One 7(2):e32366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Kohlova M, Ribeiro S, do Sameiro-Faria M et al (2013) Circulating cell-free DNA levels in hemodialysis patients and its association with inflammation, iron metabolism, and rhEPO doses. Hemodial Int 17(4):664–667

    PubMed  Google Scholar 

  30. Keshari RS, Jyoti A, Kumar S et al (2012) Neutrophil extracellular traps contain mitochondrial as well as nuclear DNA and exhibit inflammatory potential. Cytometry A 81(3):238–247

    Article  PubMed  Google Scholar 

  31. Atamaniuk J, Kopecky C, Skoupy S et al (2012) Apoptotic cell-free DNA promotes inflammation in haemodialysis patients. Nephrol Dial Transplant 27(3):902–905

    Article  CAS  PubMed  Google Scholar 

  32. Margraf S, Logters T, Reipen J et al (2008) Neutrophil-derived circulating free DNA (cf-DNA/NETs): a potential prognostic marker for posttraumatic development of inflammatory second hit and sepsis. Shock 30(4):352–358

    Article  CAS  PubMed  Google Scholar 

  33. Jylhava J, Nevalainen T, Marttila S et al (2013) Characterization of the role of distinct plasma cell-free DNA species in age-associated inflammation and frailty. Aging Cell 12(3):388–397

    Article  CAS  PubMed  Google Scholar 

  34. Yang D, Oppenheim JJ (2004) Antimicrobial proteins act as “alarmins” in joint immune defense. Arthritis Rheum 50(11):3401–3403

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (KAKENHI 25462771 to Y. K.). No additional external funding was received for this study.

Ethical standard

The experimental protocols of the in vivo studies were reviewed and approved by the Animal Care and Use Committee at the Mie University Graduate School of Medicine. Written informed consent was obtained from all of the patients or guardians enrolled in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhki Koike.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 1013 kb)

Supplementary material 2 (MP4 1085 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koike, Y., Uchida, K., Tanaka, K. et al. Dynamic pathology for circulating free DNA in a dextran sodium sulfate colitis mouse model. Pediatr Surg Int 30, 1199–1206 (2014). https://doi.org/10.1007/s00383-014-3607-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-014-3607-6

Keywords

Navigation