Skip to main content

Advertisement

Log in

Hirschsprung’s disease and the brain

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

A link between factors governing brain development and the development of the ENS is not surprising as both processes are largely controlled by the same or similar neural growth factors which are expressed at more or less in the same spatio-temporal time frame. Hirschsprung’s disease (HSCR) occurs as an isolated phenotype in 70% of cases but is associated with other congenital abnormalities and syndromic phenotypes in the remainder, with CNS anomalies making up 6.78%. These associations may be underestimated and are possibly pathogenetically linked to genetic associations and probable gene–gene interaction. In this review we explore known syndromes and other ENS associations of HSCR, looking at possible pathogenetic associations. We point out that borderline cognitive abilities, attention-deficit disorders and possible epileptic seizures in Hirschsprung’s patients should be fully investigated. We recognise that this group of patients remain a challenge from a clinical and functional management point of view, and suggest possible management guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moore SW (2008) Congenital anomalies and genetic associations: in Hirschsprung’s disease. In: Holschneider AM, Puri P (eds) Hirschsprung’s disease and allied disorders, chap 9, 3rd edn. Springer, Berlin, pp 115–131

  2. Amiel J, Lyonnet S (2001) Hirschsprung disease, associated syndromes, genetics: a review. J Med Genet 38:729–739

    Article  PubMed  CAS  Google Scholar 

  3. Moore SW (2006) The contribution of associated congenital anomalies in understanding Hirschsprung’s disease. Pediatr Surg Int 22:305–315

    Article  PubMed  CAS  Google Scholar 

  4. Carrascosa-Romero MC, Fernandez-Cordoba MS, Gonzalvez-Pinera J, Gutierrez-Junquera C, Pardal-Fernandez JM (2007) Neurocristopathies: a high incidence of cerebral dysgenesis in patients with Hirschsprung’s disease. Rev Neurol 45:707–712

    PubMed  CAS  Google Scholar 

  5. Mowat DR, Croaker GD, Cass DT, Kerr BA, Chaitow J, Ades LC, Chia NL, Wilson MJ (1998) Hirschsprung disease, microcephaly, mental retardation, and characteristic facial features: delineation of a new syndrome and identification of a locus at chromosome 2q22–q23. J Med Genet 35:617–623

    Article  PubMed  CAS  Google Scholar 

  6. Croaker GD, Shi E, Simpson E, Cartmill T, Cass DT (1998) Congenital central hypoventilation syndrome and Hirschsprung’s disease. Arch Dis Child 78:316–322

    Article  PubMed  CAS  Google Scholar 

  7. Turkdogan-Sozuer D, Ozek MM, Sehiralti V, Kurtkaya O, Sav A (1998) Hemimegalencephaly and Hirschsprung’s disease: a unique association. Pediatr Neurol 18:452–455

    Article  PubMed  CAS  Google Scholar 

  8. Brooks AS, Breuning MH, Osinga J, vd Smagt JJ, Catsman CE, Buys CH, Meijers C, Hofstra RM (1999) A consanguineous family with Hirschsprung disease, microcephaly, and mental retardation (Goldberg–Shprintzen syndrome). J Med Genet 36:485–489

    PubMed  CAS  Google Scholar 

  9. Shahar E, Shinawi M (2003) Neurocristopathies presenting with neurologic abnormalities associated with Hirschsprung’s disease. Pediatr Neurol 28:385–391

    Article  PubMed  Google Scholar 

  10. Mowat DR, Wilson MJ, Goossens M (2003) Mowat–Wilson syndrome. J Med Genet 40:305–310

    Article  PubMed  CAS  Google Scholar 

  11. Mathew A (1998) Anencephaly-associated aganglionosis. Am J Med Genet 80:518–520

    Article  PubMed  CAS  Google Scholar 

  12. Melaragno MI, Brunoni D, Patricio FR, Corbani M, Mustacchi Z, dos Santos Rde C, Lederman HM (1992) A patient with tetrasomy 9p, Dandy–Walker cyst and Hirschsprung disease. Ann Genet 35:79–84

    PubMed  CAS  Google Scholar 

  13. Bolk-Gabriel S, Salomon R, Pelet A et al (2002) Segregation at three loci explains familial and population risk in Hirschsprung disease. Nat Genet 1:89–93

    Article  Google Scholar 

  14. Weinberg AG, Currarino G, Besserman M (1977) Hirschsprung’s disease and congenital deafness. Hum Genet 38:157–161

    Article  PubMed  CAS  Google Scholar 

  15. Omenn GS, McKusick VA (1979) The association of Waardenburgh syndrome and Hirschsprung’s megacolon. Am J Med Genet 3:217–223

    Article  PubMed  CAS  Google Scholar 

  16. Shah KN, Dalal SJ, Desai MP (1981) White forelock, pigmentary disorder of irides and long segment Hirschsprung’s disease: possible variant of Waardenburg syndrome. J Pediatr 99:432–435

    Article  PubMed  CAS  Google Scholar 

  17. Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60

    Article  PubMed  CAS  Google Scholar 

  18. Gershon MD (2010) Developmental determinants of the independence and complexity of the enteric nervous system. Trends Neurosci 33:446–456

    Article  PubMed  CAS  Google Scholar 

  19. Young HM, Bergner AJ, Anderson RB, Enomoto H, Milbrandt J, Newgreen DF, Whitington PM (2004) Dynamics of neural crest-derived cell migration in the embryonic mouse gut. Dev Biol 270:455–473

    Article  PubMed  CAS  Google Scholar 

  20. Takahashi T, Nowakowski RS, Caviness VS Jr (1995) The cell cycle of the pseudostratified ventricular epithelium of the embryonic murine cerebral wall. J Neurosci 15:6046–6057

    PubMed  CAS  Google Scholar 

  21. Young HM, Anderson RB, Anderson CR (2004) Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 112:1–14

    Article  PubMed  CAS  Google Scholar 

  22. Moore SW (2008) Down syndrome and the enteric nervous system. Pediatr Surg Int 24:873–883

    Article  PubMed  CAS  Google Scholar 

  23. Adam MP, Schelley S, Gallagher R, Brady AN, Barr K, Blumberg B et al (2006) Clinical features and management issues in Mowat–Wilson syndrome. Am.J Med.Genet.A 140:2730–2741

    PubMed  Google Scholar 

  24. Passarge E (1967) The genetics of Hirschsprung’s disease. N Engl J Med 276:138–143

    Article  PubMed  CAS  Google Scholar 

  25. Garver K, Law J, Garver B (1985) Hirschsprung disease: a genetic study. Clin Genet 28:503–508

    Article  PubMed  CAS  Google Scholar 

  26. Ikeda K, Goto S (1986) Additional anomalies in Hirschsprung’s disease: an analysis based on a nationwide survey in Japan. Z Kinderchir 41:279–281

    PubMed  CAS  Google Scholar 

  27. Spouge D, Baird PA (1985) Hirschsprung’s disease in a large birth cohort. Teratology 32:171–177

    Article  PubMed  CAS  Google Scholar 

  28. Badner JA, Sieber WK, Garver KL, Chakravarti A (1990) A genetic study of Hirschsprung disease. Am J Hum Genet 46:568–580

    PubMed  CAS  Google Scholar 

  29. Goldberg EL (1984) An epidemiological study of Hirschsprung’s disease. Int J Epidemiol 13:479–485

    Article  PubMed  CAS  Google Scholar 

  30. Caniano DA, Teitelbaum DH, Qualman SJ (1990) Management of Hirschsprung’s disease in children with trisomy 21. Am J Surg 159:402–404

    Article  PubMed  CAS  Google Scholar 

  31. Quinn FM, Surana R, Puri P (1994) The influence of trisomy 21 on outcome in children with Hirschsprung’s disease. J Pediatr Surg 29:781–783

    Article  PubMed  CAS  Google Scholar 

  32. Besson WT, Kirby ML, Van Mierop LHS, Teabeaut JR (1986) Effects of the size of lesions of the cardiac neural crest at various embryonic ages on incidence and type of cardiac defects. Circulation 73:360–364

    PubMed  Google Scholar 

  33. Spahis JK, Wilson GN (1999) Down syndrome: perinatal complications and counseling experiences in 216 patients. Am J Med Genet 89:96–99

    Article  PubMed  CAS  Google Scholar 

  34. Nakazato Y, Landing BH (1986) Reduced number of neurons in esophageal plexus ganglia in Down syndrome: additional evidence for reduced cell number as a basic feature of the disorder. Pediatr Pathol 5:55–63

    Article  PubMed  CAS  Google Scholar 

  35. Graivier L, Sieber WK (1966) Hirschsprung’s disease and mongolism. Surgery 60:458–461

    PubMed  CAS  Google Scholar 

  36. Ishihara N, Shimada A, Kato J, Niimi N, Tanaka S, Miura K, Suzuki T, Wakamatsu N, Nagaya M (2005) Variations in aganglionic segment length of the enteric neural plexus in Mowat–Wilson syndrome. J Pediatr Surg 40:1411–1419

    Article  PubMed  Google Scholar 

  37. Wilson M, Mowat D, Dastot-Le Moal F, Cacheux V, Kaariainen H, Cass D, Donnai D, Clayton-Smith J, Townshend S, Curry C, Gattas M, Braddock S, Kerr B, Aftimos S, Zehnwirth H, Barrey C, Goossens M (2003) Further delineation of the phenotype associated with heterozygous mutations in ZFHX1B. Am J Med Genet A 119A:257–265

    Article  PubMed  Google Scholar 

  38. Gregory-Evans CY, Vieira H, Dalton R, Adams GG, Salt A, Gregory-Evans K (2004) Ocular coloboma and high myopia with Hirschsprung disease associated with a novel ZFHX1B missense mutation and trisomy 21. Am J Med Genet A 131:86–90

    Article  PubMed  CAS  Google Scholar 

  39. Gallego J, Dauger S (2008) PHOX2B mutations and ventilatory control. Respir Physiol Neurobiol 164:49–54

    Google Scholar 

  40. Kazanjian A, Noah T, Brown D, Burkart J, Shroyer NF (2010) Atonal homolog 1 is required for growth and differentiation effects of notch/gamma-secretase inhibitors on normal and cancerous intestinal epithelial cells. Gastroenterology 139:918–928

    Article  PubMed  CAS  Google Scholar 

  41. Rose MF, Ahmad KA, Thaller C, Zoghbi HY (2009) Excitatory neurons of the proprioceptive, interoceptive, and arousal hindbrain networks share a developmental requirement for Math1. Proc Natl Acad Sci USA 106:22462–22467

    Article  PubMed  CAS  Google Scholar 

  42. Rose MF, Ren J, Ahmad KA, Chao HT, Klisch TJ, Flora A, Greer JJ, Zoghbi HY (2009) Math1 is essential for the development of hindbrain neurons critical for perinatal breathing. Neuron 64:341–354

    Article  PubMed  CAS  Google Scholar 

  43. Okamoto N, Wada Y, Goto M (1997) Hydrocephalus and Hirschsprung’s disease in a patient with a mutation of L1CAM. J Med Genet 34:670–671

    Article  PubMed  CAS  Google Scholar 

  44. Schafer MK, Altevogt P (2010) L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 67:2425–2437

    Article  PubMed  Google Scholar 

  45. Gianino S, Grider JR, Cresswell J, Enomoto H, Heuckeroth RO (2003) GDNF availability determines enteric neuron number by controlling precursor proliferation. Development 130:2187–2198

    Article  PubMed  CAS  Google Scholar 

  46. Hearn CJ, Murphy M, Newgreen D (1998) GDNF and ET-3 differentially modulate the numbers of avian enteric neural crest cells and enteric neurons in vitro. Dev Biol 197:93–105

    Article  PubMed  CAS  Google Scholar 

  47. Young HM, Hearn CJ, Farlie PG, Canty AJ, Thomas PQ, Newgreen DF (2001) GDNF is a chemoattractant for enteric neural cells. Dev Biol 229:503–516

    Article  PubMed  CAS  Google Scholar 

  48. Enomoto H (2005) Regulation of neural development by glial cell line-derived neurotrophic factor family ligands. Anat Sci Int 80:42–52

    Article  PubMed  CAS  Google Scholar 

  49. Martucciello G, Bicocci MP, Dodero P, Lerone M, Silengo-Cirillo M, Puliti A, Gimelli G (1992) Total colonic aganglionosis associated with interstitial deletion of the long arm of chromosome 10. Pediatr Surg Int 7:308–310

    Article  Google Scholar 

  50. Borrego S, Ruiz A, Saez ME, Gimm O, Gao X, Lopez-Alonso M, Hernandez A, Wright FA, Antinolo G, Eng C (2000) RET genotypes comprising specific haplotypes of polymorphic variants predispose to isolated Hirschsprung disease. J Med Genet 37:572–578

    Article  PubMed  CAS  Google Scholar 

  51. Sariola H, Saarma M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116:3855–3862

    Article  PubMed  CAS  Google Scholar 

  52. Stanchina L, Van de Putte T, Goossens M, Huylebroeck D, Bondurand N (2010) Genetic interaction between Sox10 and Zfhx1b during enteric nervous system development. Dev Biol 341:416–428

    Article  PubMed  CAS  Google Scholar 

  53. Lang D, Chen F, Milewski R, Li J, Lu MM, Epstein JA (2000) Pax3 is required for enteric ganglia formation and functions with Sox10 to modulate expression of c-ret. J Clin Invest 106:963–971

    Article  PubMed  CAS  Google Scholar 

  54. Lang D, Epstein JA (2003) Sox10 and Pax3 physically interact to mediate activation of a conserved c-RET enhancer. Hum Mol Genet 12:937–945

    Article  PubMed  CAS  Google Scholar 

  55. Zhu L, Lee HO, Jordan CS, Cantrell VA, Southard-Smith EM, Shin MK (2004) Spatiotemporal regulation of endothelin receptor-B by SOX10 in neural crest-derived enteric neuron precursors. Nat Genet 36:732–737

    Article  PubMed  CAS  Google Scholar 

  56. Cohen I, Gadd MA (1982) Hirschsprung’s disease in a kindred: a possible clue to the genetics of the disease. J Pediatr Surg 17:632–634

    Article  PubMed  CAS  Google Scholar 

  57. Schocket E, Telok HA (1957) Aganglionic megacolon, phaeochromocytoma, megaloureter and neurofibromatosis. Am J Dis Child 94:185–191

    Google Scholar 

  58. Branski D, Denn NR, Neale JM, Brooks LJ (1979) Hirschsprung’s disease and Waardenburghs syndrome. Pediatrics 63:803–806

    PubMed  CAS  Google Scholar 

  59. Bolande RP (1974) The neurocristopathies: a unifying concept of disease arising in neural crest maldevelopment. Hum Pathol 5:409–429

    Article  Google Scholar 

  60. Sznajer Y, Coldea C, Meire F, Delpierre I, Sekhara T, Touraine RL (2008) A de novo SOX10 mutation causing severe type 4 Waardenburg syndrome without Hirschsprung disease. Am J Med Genet A 146A:1038–1041

    Article  PubMed  Google Scholar 

  61. Garavelli L, Pedori S, Dal Zotto R, Franchi F, Marinelli M, Croci GF, Bellato S, Ammenti A, Virdis R, Banchini G, Superti-Furga A (2006) Anophthalmos with limb anomalies (Waardenburg ophthalmo-acromelic syndrome): report of a new Italian case with renal anomaly and review. Genet Couns 17:449–455

    PubMed  CAS  Google Scholar 

  62. Galasso C, Bombardieri R, Cerminara C, Stranci G, Curatolo P (2007) Anophthalmia–Waardenburg syndrome with expanding phenotype: does neural crest play a role? J Child Neurol 22:1252–1255

    Article  PubMed  Google Scholar 

  63. Meijers C, Mulder M (1995) Anteroposterior differences within caudal hindbrain neural crest cell populations and the development of the enteric nervous system. Presented at the second international meeting: Hirschsprung disease and related neurocristopathies. Cleveland, Ohio, October 1995

  64. Lankosz-Lauterbach J, Sanak M (1987) Oculoauriculovertebral syndrome (Goldenhar syndrome) associated with Hirschsprung disease. Pediatr Pol 62:249–252

    PubMed  CAS  Google Scholar 

  65. Ryan ET, Ecker JL, Christakis NA, Folkman J (1992) Hirschsprung’s disease: associated abnormalities and demography. J Pediatr Surg 27:76–81

    Article  PubMed  CAS  Google Scholar 

  66. Molander M-L (1990) Hirschsprung’s disease in mentally retarded patients: a bad prognostic combination. Pediatr Surg Int 5:339–340

    Article  Google Scholar 

  67. Gunnarsdottir A, Sandblom G, Arnbjornsson E, Larsson LT (2010) Quality of life in adults operated on for Hirschsprung disease in childhood. J Pediatr Gastroenterol Nutr 51:160–166

    Article  PubMed  Google Scholar 

  68. Moore SW, Johnson GA (1998) Hirschsprung’s disease: genetic and functional associations of Downs and Waardenburghs syndromes. Semin Pediatr Surg (USA) 7:156–161

    CAS  Google Scholar 

  69. Morabito A, Lall A, Gull S, Mohee A, Bianchi A (2006) The impact of Down’s syndrome on the immediate and long-term outcomes of children with Hirschsprung’s disease. Pediatr Surg Int 22:179–181

    Article  PubMed  Google Scholar 

  70. Teitelbaum DH, Qualman SJ, Caniano DA (1988) Hirschsprung’s disease: identification of risk factors for enterocolitis. Ann Surg 207:240–244

    Article  PubMed  CAS  Google Scholar 

  71. Grosfeld J, Ballantine T, Csicsko J (1978) A critical evaluation of the Duhamel operation for HSCR. Arch Surg 113:454–459

    PubMed  CAS  Google Scholar 

  72. Wilson-Storey WD, Scobie WG, Raeburn JA (1988) Defective white blood cell function in Hirschsprung’s disease: a possible predisposing factor for enterocolitis. J R Coll Surg Edin 33:185–188

    CAS  Google Scholar 

  73. Moore SW, Zaahl MG (2008) The ITGB2 immunomodulatory gene (CD18), enterocolitis and Hirschsprung’s disease (HSCR). J Pediatr Surg 43(8):1439–1444

    Article  PubMed  Google Scholar 

  74. Catto-Smith AG, Trajanovska M, Taylor RG (2006) Long-term continence in patients with Hirschsprung’s disease and Down syndrome. J Gastroenterol Hepatol 21:748–753

    Article  PubMed  Google Scholar 

  75. Matsuda H, Hirato J, Kuroiwa M, Nakazato Y (2006) Histopathological and immunohistochemical study of the enteric innervations among various types of aganglionoses including isolated and syndromic Hirschsprung disease. Neuropathology 26:8–23

    Article  PubMed  Google Scholar 

  76. Moore SW, Tshifularo N (2011) Hirschsprung’s disease in the neurologically challenged child. Int J Adolescent Medicine and Health 23 (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. W. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S.W. Hirschsprung’s disease and the brain. Pediatr Surg Int 27, 347–352 (2011). https://doi.org/10.1007/s00383-010-2807-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-010-2807-y

Keywords

Navigation