Skip to main content

Advertisement

Log in

Microecology, intestinal epithelial barrier and necrotizing enterocolitis

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Soon after birth, the neonatal intestine is confronted with a massive antigenic challenge of microbial colonization. Microbial signals are required for maturation of several physiological, anatomical, and biochemical functions of intestinal epithelial barrier (IEB) after birth. Commensal bacteria regulate intestinal innate and adaptive immunity and provide stimuli for ongoing repair and restitution of IEB. Colonization by pathogenic bacteria and/or dysmature response to microbial stimuli can result in flagrant inflammatory response as seen in necrotizing enterocolitis (NEC). Characterized by inflammation and hemorrhagic–ischemic necrosis, NEC is a devastating complication of prematurity. Although there is evidence that both prematurity and presence of bacteria, are proven contributing factors to the pathogenesis of NEC, the molecular mechanisms involved in IEB dysfunction associated with NEC have begun to emerge only recently. The metagenomic advances in the field of intestinal microecology are providing insight into the factors that are required for establishment of commensal bacteria that appear to provide protection against intestinal inflammation and NEC. Perturbations in achieving colonization by commensal bacteria such as premature birth or hospitalization in intensive care nursery can result in dysfunction of IEB and NEC. In this article, microbial modulation of functions of IEB and its relationship with barrier dysfunction and NEC are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

IEB:

Intestinal epithelial barrier

NEC:

Necrotizing enterocolitis

IM:

Intestinal microecology

GALT:

Gut-associated lymphoid tissue

IEL:

Intestinal epithelial lymphocyte

PRRs:

Pattern recognition receptors

MAMPs:

Microbial-associated molecular patterns

TLR:

Toll-like receptor

NOD:

Nucleotide-binding oligomerization domain

FPRs:

Formylated peptide receptors

LPS:

Lipopolysaccharide

MAPK:

Mitogen-activated protein kinase

NFκB:

Nuclear factor kappa B

Rel:

Proteins coded by rel oncogenes

M-cells:

Microfold-cells

CARD:

Caspase recruitment domain

Myd88:

Myeloid differentiation primary-response gene 88

T-reg:

T regulatory

Th:

T helper

APRIL:

A proliferation-inducing ligand

BAFF:

B-cell activating factor

SLP1:

Secretory leucocyte peptidase inhibitor 1

AMP:

Antimicrobial peptide

CXC:

Chemokine

IRAK:

IL-1-R associated protein kinase

TNF-α:

Tumor necrosis factor-α

NO:

Nitric oxide

IL:

Interleukin

DGGE:

Denaturing gradient gel electrophoresis

PCR-TTGE:

Polymerase chain reaction-temporal temperature gradient gel electrophoresis

rRNA:

Ribosomal RNA

ARISA:

Automated ribosomal intergenic spacer analysis

FISH:

Fluorescent in situ hybridization

References

  1. Eckburg PB, Bik EM, Bernstein CN et al (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638

    Article  PubMed  Google Scholar 

  2. Xu J, Gordon JI (2003) Inaugural article: honor thy symbionts. Proc Natl Acad Sci USA 100:10452–10459

    Article  CAS  PubMed  Google Scholar 

  3. Abt MC, Artis D (2009) The intestinal microbiota in health and disease: the influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 25:496–502

    Article  CAS  PubMed  Google Scholar 

  4. Sharma R, Young C, Mshvildadze M et al (2009) Intestinal microbiota: does it play a role in diseases of the neonate? Neoreviews 10:e166–e179

    Article  Google Scholar 

  5. Bäckhed F, Ley RE, Sonnenburg JL et al (2005) Host–bacterial mutualism in the human intestine. Science 307:1915–1920

    Article  PubMed  Google Scholar 

  6. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693

    Article  PubMed  Google Scholar 

  7. Martin FPJ, Sprenger N, Yap IKS et al (2009) Panorganismal gut microbiome–host metabolic cross talk. J Proteome Res 8:2090–2105

    Article  CAS  PubMed  Google Scholar 

  8. Mariat D, Firmesse O, Levenez F et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9:123

    Article  CAS  PubMed  Google Scholar 

  9. Mshvildadze M, Neu J, Mai V (2008) Intestinal microbiota development in the premature neonate: establishment of a lasting commensal relationship? Nutr Rev 66:658–663

    Article  PubMed  Google Scholar 

  10. Sharma R, Tepas JJ III, Hudak ML (2007) Neonatal gut barrier and multiple organ failure: role of endotoxin and proinflammatory cytokines in sepsis and necrotizing enterocolitis. Pediatr Surg 42:454–461

    Article  Google Scholar 

  11. Lin PW, Nasr TR, Stoll BJ (2008) Necrotizing enterocolitis: recent scientific advances in pathophysiology and prevention. Semin Perinatol 32:70–82

    Article  PubMed  Google Scholar 

  12. Sharma R, Young C, Neu J (2009) Molecular modulation of intestinal epithelial barrier: contribution of microbiota. In: Kitamura K, McCann A, Wu XR (eds) The epithelium molecular landscaping for an interactive barrier J Biomed Biotechnol (special issue) (in press)

  13. Hooper LV (2004) Bacterial contributions to mammalian gut development. Trends Microbiol 12:129–134

    Article  CAS  PubMed  Google Scholar 

  14. Stappenbeck TS, Hooper LV, Gordon JI (2002) Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc Natl Acad Sci USA 99:15451–15455

    Article  CAS  PubMed  Google Scholar 

  15. Hooper LV, Stappenbeck TS, Hong CV et al (2003) Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 4:269–273

    Article  CAS  PubMed  Google Scholar 

  16. Ismail AS, Behrendt CL, Hooper LV (2009) Reciprocal interactions between commensal bacteria and gamma delta intraepithelial lymphocytes during mucosal injury. J Immunol 182:3047–3054

    Article  CAS  PubMed  Google Scholar 

  17. Neish AS (2009) Microbes in gastrointestinal health and disease. Gastroenterology 136:65–80

    Article  PubMed  Google Scholar 

  18. Conroy ME, Walker WA (2008) Intestinal immune health. Nestle Nutr Workshop Ser Pediatr Program 62:111–121

    Google Scholar 

  19. Akira S (2009) Pathogen recognition by innate immunity and its signaling. Proc Jpn Acad Ser 85:143–156

    Article  CAS  Google Scholar 

  20. O’Hara AM, Shanahan F (2007) Gut microbiota: mining for therapeutic potential. Clin Gastroenterol Hepatol 5:274–284

    Article  PubMed  Google Scholar 

  21. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420

    Article  CAS  PubMed  Google Scholar 

  22. Cario E (2005) Bacterial interactions with cells of the intestinal mucosa: Toll-like receptors and NOD2. Gut 54:1182–1193

    Article  CAS  PubMed  Google Scholar 

  23. Duerkop BA, Vaishnava S, Hooper LV (2009) Immune responses to the microbiota at the intestinal mucosal surface. Immunity 31:368–376

    Article  CAS  PubMed  Google Scholar 

  24. Claud EC, Walker WA (2008) Bacterial colonization, probiotics, and necrotizing enterocolitis. J Clin Gastroenterol 42(Suppl 2):S46–S52

    Article  PubMed  Google Scholar 

  25. Jilling T, Simon D, Lu J et al (2006) The roles of bacteria and TLR4 in rat and murine models of necrotizing enterocolitis. J Immunol 177:3273–3282

    CAS  PubMed  Google Scholar 

  26. Neish AS (2007) TLRs in the gut. II Flagellin-induced inflammation and antiapoptosis. Am J Physiol Gastrointest Liver Physiol 292:G462–G466

    Article  CAS  PubMed  Google Scholar 

  27. Macdonald TT, Monteleone G (2005) Immunity, inflammation, and allergy in the gut. Science 307:1920–1925

    Article  CAS  PubMed  Google Scholar 

  28. Macpherson AJ, Geuking MB, McCoy KD (2005) Immune responses that adapt the intestinal mucosa to commensal intestinal bacteria. Immunology 115:153–162

    Article  CAS  PubMed  Google Scholar 

  29. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453:620–625

    Article  CAS  PubMed  Google Scholar 

  30. Levy O (2007) Innate immunity of the newborn: basic mechanisms and clinical correlates. Nat Rev Immunol 7:379–390

    Article  CAS  PubMed  Google Scholar 

  31. Kelly D, King T, Aminov R (2007) Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 622:58–69

    CAS  PubMed  Google Scholar 

  32. Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303:1662–1665

    Article  CAS  PubMed  Google Scholar 

  33. Coombes JL, Powrie F (2008) Dendritic cells in intestinal immune regulation. Nat Rev Immunol 8:435–446

    Article  CAS  PubMed  Google Scholar 

  34. Abreu MT, Vora P, Faure E et al (2001) Decreased expression of Toll-like receptor-4 and MD-2 correlates with intestinal epithelial cell protection against dysregulated proinflammatory gene expression in response to bacterial lipopolysaccharide. J Immunol 167:1609–1616

    CAS  PubMed  Google Scholar 

  35. Forchielli ML, Walker WA (2005) The role of gut-associated lymphoid tissues and mucosal defence. Br J Nutr 93(Suppl 1):S41–S48

    Article  CAS  PubMed  Google Scholar 

  36. Naik S, Kelly EJ, Meijer L et al (2001) Absence of Toll-like receptor 4 explains endotoxin hyporesponsiveness in human intestinal epithelium. J Pediatr Gastroenterol Nutr 32:449–453

    Article  CAS  PubMed  Google Scholar 

  37. Shibolet O, Podolsky DK (2007) TLRs in the gut. IV. Negative regulation of Toll-like receptors, intestinal homeostasis: addition by subtraction. Am J Physiol Gastrointest Liver Physiol 292:G1469–G1473

    Article  CAS  PubMed  Google Scholar 

  38. Neutra MR, Mantis NJ, Kraehenbuhl JP (2001) Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2:1004–1009

    Article  CAS  PubMed  Google Scholar 

  39. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323

    Article  CAS  PubMed  Google Scholar 

  40. Neu J, Mshvildadze M, Mai V (2008) A roadmap for understanding and preventing necrotizing enterocolitis. Curr Gastroenterol Rep 10:450–457

    Article  PubMed  Google Scholar 

  41. Cochetière MF, Rougé C, Darmaun D et al (2007) Intestinal microbiota in neonates and preterm infants: a review. Curr Pediatr Rev 3:21–34

    Article  Google Scholar 

  42. Liu Z, Li N, Neu J (2005) Tight junctions, leaky intestines, and pediatric diseases. Acta Paediatr 94:386–393

    CAS  PubMed  Google Scholar 

  43. Anand RJ, Leaphart CL, Mollen KP et al (2007) The role of the intestinal barrier in the pathogenesis of necrotizing enterocolitis. Shock 27:124–133

    Article  CAS  PubMed  Google Scholar 

  44. Dharmani P, Srivastava V, Kissoon-Singh V et al (2009) Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 1:123–135

    Article  CAS  Google Scholar 

  45. Khailova L, Dvorak K, Arganbright KM et al (2009) Bifidobacterium bifidum improves intestinal integrity in a rat model of necrotizing enterocolitis. Am J Physiol Gastrointest Liver Physiol Aug 27 [Epub ahead of print]

  46. Zaph C, Du Y, Saenz SA et al (2008) Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J Exp Med 205:2191–2198

    Article  CAS  PubMed  Google Scholar 

  47. Sakata H, Yosioka H, Fujita K (1985) Development of intestinal flora in very low birth weight infants compared to normal full-term newborns. Eur J Pediatr 144:186–190

    Article  CAS  PubMed  Google Scholar 

  48. Mai V, Draganov PV (2009) Recent advances and remaining gaps in our knowledge of associations between gut microbiota and human health. World J Gastroenterol 15:81–85

    Article  PubMed  Google Scholar 

  49. Schwiertz A, Gruhl B, Löbnitz M et al (2003) Development of the intestinal bacterial composition in hospitalized preterm infants in comparison with breast-fed, full-term infants. Pediatr Res 54:393–399

    Article  PubMed  Google Scholar 

  50. Magne F, Abély M, Boyer F et al (2006) Low species diversity and high interindividual variability in faeces of preterm infants as revealed by sequences of 16S rRNA genes and PCR-temporal temperature gradient gel electrophoresis profiles. FEMS Microbiol Ecol 57:128–138

    Article  CAS  PubMed  Google Scholar 

  51. Butel MJ, Suau A, Campeotto F et al (2007) Conditions of bifidobacterial colonization in preterm infants: a prospective analysis. J Pediatr Gastroenterol Nutr 44:577–582

    Article  PubMed  Google Scholar 

  52. Mshvildadze M, Neu J, Shuster J et al (2009) Intestinal microbial ecology in premature infants assessed with non-culture-based techniques. J Pediatr Sep 25 [Epub ahead of print]

  53. Wang Y, Hoenig JD, Malin KJ et al (2009) 16S rRNA gene-based analysis of fecal microbiota from preterm infants with and without necrotizing enterocolitis. ISME J 3:944–954

    Article  CAS  PubMed  Google Scholar 

  54. Gewolb IH, Schwalbe RS, Taciak VL et al (1999) Stool microflora in extremely low birth weight infants. Arch Dis Child Fetal Neonatal Ed 80:F167–F173

    Article  CAS  PubMed  Google Scholar 

  55. Gaskins HR, Croix JA, Nakamura N et al (2008) Impact of the intestinal microbiota on the development of mucosal defense. Clin Infect Dis 46(Suppl 2):S80–S86

    Article  PubMed  Google Scholar 

  56. Caplan MC (2009) Probiotic and prebiotic supplementation for the prevention of neonatal necrotizing enterocolitis. J Perinatol 29:S2–S6

    Article  CAS  PubMed  Google Scholar 

  57. Hoyos AB (1999) Reduced incidence of necrotizing enterocolitis associated with enteral administration of Lactobacillus acidophilus and Bifidobacterium infantis to neonates in an intensive care unit. Int J Infect Dis 3:197–202

    Article  CAS  PubMed  Google Scholar 

  58. Dani C, Biadaioli R, Bertini G et al (2002) Probiotics feeding in prevention of urinary tract infection, bacterial sepsis and necrotizing enterocolitis in preterm infants. A prospective double-blind study. Biol Neonate 82:103–108

    Article  CAS  PubMed  Google Scholar 

  59. Bin-Nun A, Bromiker R, Wilchanski M et al (2005) Oral probiotics prevent necrotizing enterocolitis in very low birth weight neonates. J Pediatr 147:192–196

    Article  PubMed  Google Scholar 

  60. Lin HC, Hsu CH, Chen HL (2008) Oral probiotics prevent necrotizing enterocolitis in very low birth weight preterm infants: a multicenter, randomized, controlled trial. Pediatrics 122:693–700

    Article  PubMed  Google Scholar 

  61. Neu J (2007) Perinatal and neonatal manipulation of the intestinal microbiome: a note of caution. Nutr Rev 65:282–285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institute of Health grant 1RO1 HD059143-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharma, R., Tepas, J.J. Microecology, intestinal epithelial barrier and necrotizing enterocolitis. Pediatr Surg Int 26, 11–21 (2010). https://doi.org/10.1007/s00383-009-2536-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-009-2536-2

Keywords

Navigation