Skip to main content

Advertisement

Log in

Novel ‘phage display antibodies identify distinct heparan sulfate domains in developing mammalian lung

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Heparan sulfate proteoglycans (HSPGs) are essential to respiratory morphogenesis in species as diverse as Drosophila and mice; they play a role in the regulation of numerous HS-binding growth factors, e.g. fibroblast growth factors. Moreover, an HS analogue, heparin, modulates lung growth in vitro. However, it has been difficult to assess the roles of specific HS structures in lung development due to technical barriers to their spatial localisation. Lungs from Sprague–Dawley rats were harvested between E15.5 and E19.5 and immediately fixed in 4 % (w/v) paraformaldehyde (in 0.1 M phosphate-buffered saline (PBS), pH 7.4). Lungs were washed in PBS, cryoprotected with 20% (w/v) sucrose (in PBS), gelatin embedded [7.5% (w/v) gelatin, 15% (w/v) sucrose in PBS], before being covered in Cryo-M-Bed (Bright, Huntingdon, UK) and snap frozen at −40°C. Cryosections were cut at 8 μm and stained with the HSPG core protein specific antibody 3G10 and a HS ‘phage display antibody, EW4G2V. 3G10 and EW4G2V immunohistochemistry highlighted the presence of specific HS structures in lungs at all gestational ages examined. 3G10 strongly labelled airway basement membranes and the surrounding mesenchyme and showed weak staining of airway epithelial cells. EW4G2V, however, was far more selective, labelling the airway basement membranes only. Mesenchymal and epithelial cells did not appear to possess the HS epitope recognised by EW4G2V at these gestational ages. Novel ‘phage display antibodies allow the spatial distribution of tissue HS to be analysed, and demonstrate in situ that distinct cellular compartments of a tissue possess different HS structures, possibly on the same proteoglycan core protein. These probes offer a new opportunity to determine the role of HS in the pathogenesis of congenital defects such as congenital diaphragmatic hernia (CDH), where lung development is aberrant, and the resulting pulmonary hypoplasia and hypertension are a primary cause of mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    PubMed  CAS  Google Scholar 

  2. Lebeche D, Malpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86:125–136

    Article  PubMed  CAS  Google Scholar 

  3. Nogawa H, Ito T (1995) Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Development 121:1015–1022

    PubMed  CAS  Google Scholar 

  4. Nielsen HC, Martin A, Volpe MV, Hatzis D, Vosatka RJ (1997) Growth factor control of growth and epithelial differentiation in embryonic lungs. Biochem Mol Med 60:38–48

    Article  PubMed  CAS  Google Scholar 

  5. Warburton D, Seth R, Shum L, Horcher PG, Hall FL, Werb Z, Slavkin HC (1992) Epigenetic role of epidermal growth factor expression and signalling in embryonic mouse lung morphogenesis. Dev Biol 149:123–133

    Article  PubMed  CAS  Google Scholar 

  6. Sonnenberg E, Meyer D, Weidner KM, Birchmeier C (1993) Scatter factor/hepatocyte growth factor and its receptor, the c-met tyrosine kinase, can mediate a signal exchange between mesenchyme and epithelia during mouse development. J Cell Biol 123:223–235

    Article  PubMed  CAS  Google Scholar 

  7. Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial–mesenchymal interaction. Nat Genet 11:415–421

    Article  PubMed  CAS  Google Scholar 

  8. Pelton RW, Hogan BL, Miller DA, Moses HL (1990) Differential expression of genes encoding TGFs beta 1, beta 2, and beta 3 during murine palate formation. Dev Biol 141:456–460

    Article  PubMed  CAS  Google Scholar 

  9. Batchelor DC, Hutchins AM, Klempt M, Skinner SJ (1995) Developmental changes in the expression patterns of IGFs, type 1 IGF receptor and IGF-binding proteins-2 and -4 in perinatal rat lung. J Mol Endocrinol 15:105–115

    Article  PubMed  CAS  Google Scholar 

  10. Lallemand AV, Ruocco SM, Joly PM, Gaillard DA (1995) In vivo localization of the insulin-like growth factors I and II (IGF I and IGF II) gene expression during human lung development. Int J Dev Biol 39:529–537

    PubMed  CAS  Google Scholar 

  11. Maitre B, Clement A, Williams MC, Brody JS (1995) Expression of insulin-like growth factor receptors 1 and 2 in the developing lung and their relation to epithelial cell differentiation. Am J Respir Cell Mol Biol 13:262–270

    PubMed  CAS  Google Scholar 

  12. Retsch-Bogart GZ, Moats-Staats BM, Howard K, D’Ercole AJ, Stiles AD (1996) Cellular localization of messenger RNAs for insulin-like growth factors (IGFs), their receptors and binding proteins during fetal rat lung development. Am J Respir Cell Mol Biol 14:61–69

    PubMed  CAS  Google Scholar 

  13. Esko JD, Lindahl U (2001) Molecular diversity of heparan sulfate. J Clin Invest 108:169–173

    Article  PubMed  CAS  Google Scholar 

  14. Turnbull JE, Gallagher JT (1991) Distribution of iduronate 2-sulphate residues in heparan sulphate. Evidence for an ordered polymeric structure. Biochem J 273(Pt 3):553–559

    PubMed  CAS  Google Scholar 

  15. van Kuppevelt TH, Dennissen MA, van Venrooij WJ, Hoet RM, Veerkamp JH (1998) Generation and application of type-specific anti-heparan sulfate antibodies using phage display technology. Further evidence for heparan sulfate heterogeneity in the kidney. J Biol Chem 273:12960–12966

    Article  PubMed  Google Scholar 

  16. Stickens D, Zak BM, Rougier N, Esko JD, Werb Z (2005) Mice deficient in Ext2 lack heparan sulfate and develop exostoses. Development 132:5055–5068

    Article  PubMed  CAS  Google Scholar 

  17. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, Matzuk MM (2000) Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol 224:299–311

    Article  PubMed  CAS  Google Scholar 

  18. Bornemann DJ, Duncan JE, Staatz W, Selleck S, Warrior R (2004) Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways. Development 131:1927–1938

    Article  PubMed  CAS  Google Scholar 

  19. Takei Y, Ozawa Y, Sato M, Watanabe A, Tabata T (2004) Three Drosophila EXT genes shape morphogen gradients through synthesis of heparan sulfate proteoglycans. Development 131:73–82

    Article  PubMed  CAS  Google Scholar 

  20. Grobe K, Inatani M, Pallerla SR, Castagnola J, Yamaguchi Y, Esko JD (2005) Cerebral hypoplasia and craniofacial defects in mice lacking heparan sulfate Ndst1 gene function. Development 132:3777–3786

    Google Scholar 

  21. Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G (2000) Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 467:7–11

    Article  PubMed  CAS  Google Scholar 

  22. Ringvall M, Ledin J, Holmborn K, van Kuppevelt T, Ellin F, Eriksson I, Olofsson AM, Kjellen L, Forsberg E (2000) Defective heparan sulfate biosynthesis and neonatal lethality in mice lacking N-deacetylase/N-sulfotransferase-1. J Biol Chem 275:25926–25930

    Article  PubMed  CAS  Google Scholar 

  23. Lin X, Buff EM, Perrimon N, Michelson AM (1999) Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 126:3715–3723

    PubMed  CAS  Google Scholar 

  24. Li JP, Gong F, Hagner-McWhirter A, Forsberg E, Abrink M, Kisilevsky R, Zhang X, Lindahl U (2003) Targeted disruption of a murine glucuronyl C5-epimerase gene results in heparan sulfate lacking l-iduronic acid and in neonatal lethality. J Biol Chem 278:28363–28366

    Article  PubMed  CAS  Google Scholar 

  25. Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse lung. Embo J 13:3296–3301

    PubMed  CAS  Google Scholar 

  26. Celli G, LaRochelle WJ, Mackem S, Sharp R, Merlino G (1998) Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. Embo J 17:1642–1655

    Article  PubMed  CAS  Google Scholar 

  27. De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal–epithelial signalling during mouse organogenesis. Development 127:483–492

    PubMed  Google Scholar 

  28. Rapraeger AC, Krufka A, Olwin BB (1991) Requirement of heparan sulfate for bFGF-mediated fibroblast growth and myoblast differentiation. Science 252:1705–1708

    Article  PubMed  CAS  Google Scholar 

  29. Ornitz DM, Yayon A, Flanagan JG, Svahn CM, Levi E, Leder P (1992) Heparin is required for cell-free binding of basic fibroblast growth factor to a soluble receptor and for mitogenesis in whole cells. Mol Cell Biol 12:240–247

    PubMed  CAS  Google Scholar 

  30. Delehedde M, Seve M, Sergeant N, Wartelle I, Lyon M, Rudland PS, Fernig DG (2000) Fibroblast growth factor-2 stimulation of p42/44MAPK phosphorylation and IkappaB degradation is regulated by heparan sulfate/heparin in rat mammary fibroblasts. J Biol Chem 275:33905–33910

    Article  PubMed  CAS  Google Scholar 

  31. Sutherland D, Samakovlis C, Krasnow MA (1996) branchless encodes a Drosophila FGF homolog that controls tracheal cell migration and the pattern of branching. Cell 87:1091–1101

    Article  PubMed  CAS  Google Scholar 

  32. Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simonet WS (1998) Fgf-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12:3156–3161

    PubMed  CAS  Google Scholar 

  33. Izvolsky KI, Zhong L, Wei L, Yu Q, Nugent MA, Cardoso WV (2003) Heparan sulfates expressed in the distal lung are required for Fgf10 binding to the epithelium and for airway branching. Am J Physiol Lung Cell Mol Physiol 285:L838–846

    PubMed  CAS  Google Scholar 

  34. Izvolsky KI, Shoykhet D, Yang Y, Yu Q, Nugent MA, Cardoso WV (2003) Heparan sulfate-FGF10 interactions during lung morphogenesis. Dev Biol 258:185–200

    Article  PubMed  CAS  Google Scholar 

  35. Jesudason EC, Connell MG, Fernig DG, Lloyd DA, Losty PD (2000) Heparin and in-vitro experimental lung hypoplasia. Pediatr Surg Int 16:247–251

    Article  PubMed  CAS  Google Scholar 

  36. Knox S, Merry C, Stringer S, Melrose J, Whitelock J (2002) Not all perlecans are created equal: interactions with fibroblast growth factor (FGF) 2 and FGF receptors. J Biol Chem 277:14657–14665

    PubMed  CAS  Google Scholar 

  37. Kato M, Wang H, Bernfield M, Gallagher JT, Turnbull JE (1994) Cell surface syndecan-1 on distinct cell types differs in fine structure and ligand binding of its heparan sulfate chains. J Biol Chem 269:18881–18890

    PubMed  CAS  Google Scholar 

  38. Guimond SE, Turnbull JE (1999) Fibroblast growth factor receptor signalling is dictated by specific heparan sulphate saccharides. Curr Biol 9:1343–1346

    Article  PubMed  CAS  Google Scholar 

  39. Aviezer D, Levy E, Safran M, Svahn C, Buddecke E, Schmidt A, David G, Vlodavsky I, Yayon A (1994) Differential structural requirements of heparin and heparan sulfate proteoglycans that promote binding of basic fibroblast growth factor to its receptor. J Biol Chem 269:114–121

    PubMed  CAS  Google Scholar 

  40. Rahmoune H, Rudland PS, Gallagher JT, Fernig DG (1998) Hepatocyte growth factor/scatter factor has distinct classes of binding site in heparan sulfate from mammary cells. Biochemistry 37:6003–6008

    Article  PubMed  CAS  Google Scholar 

  41. Ten Dam GB, Kurup S, van de Westerlo EM, Versteeg EM, Lindahl U, Spillmann D, van Kuppevelt TH (2006) 3-o-sulfated oligosaccharide structures are recognized by anti-heparan sulfate antibody HS4C3. J Biol Chem 281:4654–4662

    PubMed  CAS  Google Scholar 

  42. ten Dam GB, van de Westerlo EM, Smetsers TF, Willemse M, van Muijen GN, Merry CL, Gallagher JT, Kim YS, van Kuppevelt TH (2004) Detection of 2-o-sulfated iduronate and N-acetylglucosamine units in heparan sulfate by an antibody selected against acharan sulfate (IdoA2S-GlcNAc)n. J Biol Chem 279:38346–38352

    Article  PubMed  CAS  Google Scholar 

  43. Dennissen MA, Jenniskens GJ, Pieffers M, Versteeg EM, Petitou M, Veerkamp JH, van Kuppevelt TH (2002) Large, tissue-regulated domain diversity of heparan sulfates demonstrated by phage display antibodies. J Biol Chem 277:10982–10986

    Article  PubMed  CAS  Google Scholar 

  44. Jesudason EC, Connell MG, Fernig DG, Lloyd DA, Losty PD (2000) Early lung malformations in congenital diaphragmatic hernia. J Pediatr Surg 35:124–127, discussion 28

    Google Scholar 

Download references

Acknowledgments

This work was supported by The Birth Defects Foundation, Childrens’ Research Fund, Human Frontiers Science Programme, Cancer and Polio Research Fund and North West Cancer Research Fund

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. D. Losty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thompson, S.M., Connell, M.G., Fernig, D.G. et al. Novel ‘phage display antibodies identify distinct heparan sulfate domains in developing mammalian lung. Pediatr Surg Int 23, 411–417 (2007). https://doi.org/10.1007/s00383-006-1864-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-006-1864-8

Keywords

Navigation