Skip to main content

Advertisement

Log in

Acetylcholinesterase in Hirschsprung’s disease

  • Review Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

The association between the congenital absence of colonic ganglion cells and an increased acetylcholinesterase (AChE) expression in the affected tissue is of diagnostic importance in Hirschsprung’s disease (HSCR). Investigation of AChE’s function in development may also help unravel some of the complex pathophysiology in HSCR. Normal nerves do not stain for AChE, but increased AChE expression is associated with the hypertrophied extrinsic nerve fibres of the aganglionic segment in HSCR. Although a high degree of histochemical diagnostic accuracy exists, results are not always uniform, and false positives and false negatives are reported. False negative results are primarily related to age, and an absence of AChE reaction does not exclude HSCR in neonates within the first 3 weeks after birth. AChE staining results may lack uniformity, resulting in a number of technical modifications that have been made to improve standardization of AChE staining. At least two distinct histological patterns are described, types A and B. The interpretation of increased AChE staining patterns in ganglionated bowel at the time of surgical pull-through remains a problem in patients with HSCR. The development of rapid staining techniques has helped to identify normal ganglionated bowel with greater certainty. The presence of fine AChE neurofibrils in the ganglionated segment has contributed to the debate surrounding intestinal neuronal dysplasia. Quantitative assay of cholinesterase activity confirms the pattern of histochemical staining. AChE is particularly increased in relation to butrylcholinesterase, with one molecular form, the G4 tetrameric form, predominating. It is likely that the raised levels of AChE in aganglionic tissue are the transcriptional consequence of the abnormalities in signalling molecules that characterize HSCR. Evidence suggests that this AChE is functioning in a nonenzymatic capacity to promote cell adhesion and differentiation and that the hypertrophied nerves and neurofibrils may be the result of this increased AChE expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ariel I, Vinograd I, Lernau OZ, Nissan S, Rosenmann E (1983) Rectal mucosal biopsy in aganglionosis and allied conditions. Hum Pathol 14(11):991–995

    Google Scholar 

  2. Barr LC, Booth J, Filipe MI, Lawson JO (1985) Clinical evaluation of the histochemical diagnosis of Hirschsprung’s disease. Gut 26(4):393–399

    Google Scholar 

  3. Biagioni S, Odorisio T, Poiana G, Scarsella G, Augusti-Tocco G (1989) Acetylcholinesterase in the development of chick dorsal root ganglia. Int J Dev Neurosci 7:267–273

    Google Scholar 

  4. Bigbee JW, Sharma KV, Chan EL, Bogler O (2000) Evidence for the direct role of acetylcholinesteras in neurite outgrowth in primary dorsal root ganglion neurons. Brain Res 861:354–362

    Article  CAS  PubMed  Google Scholar 

  5. Blisard KS, Kleinman R (1986) Hirschsprung’s disease: a clinical and pathological overview. Hum Pathol 17:1189–1191

    Google Scholar 

  6. Bonham JR, Dale G, Scott D, Wagget J (1985) Molecular forms of acetylcholinesterase in Hirschsprung’s disease. Clin Chim Acta 145(3):297–305

    Google Scholar 

  7. Borchard F, Meier-Ruge W, Wiebecke B, Briner J, Muntefering H, Fodisch HF, Holschneider AM, Schmidt A, Enck P, Stolte M (1991) Innervation abnormalities of the large bowel: classification and diagnosis. Pathologe 12:171–174

    Google Scholar 

  8. Boston VE, Dale G, Riley KW (1975) Diagnosis of Hirschsprung’s disease by quantitative biochemical assay of acetylcholinesterase in rectal tissue. Lancet 2(7942):951–953

    Google Scholar 

  9. Causse E, Vaysse P, Fabre J, Valdiguie P, Thouvenot JP(1987) The diagnostic value of acetylcholinesterase/butrylcholinesterase ratio in Hirschsprung’s disease. Am J Clin Pathol 88(4):477–480

    Google Scholar 

  10. Chow CW, Chan WC, Yue PC (1977) Histochemical criteria for the diagnosis of Hirschsprung’s disease in rectal suction biopsies by acetylcholinesterase activity. J Pediatr Surg 12(5):675–680

    Google Scholar 

  11. Chubb IW, Pilowsky PM, Springell HJ, Pollard AC (1979) Acetylcholinesterase in human amniotic fluid: an index of fetal neural development. Lancet 1(8118):688–690

    Google Scholar 

  12. Dale G, Bonham JR, Lowdon P, Roberts DF (1979) Amniotic-fluid acetylcholinesterase and neural-tube defects. Lancet 1(8121):880–881

    Google Scholar 

  13. Dale G, Bonham JR, Riley KW, Wagget J (1977) An improved method for the determination of acetylcholinesterase activity in rectal biopsy tissue from patients with Hirschsprung’s disease. Clin Chim Acta 77(3):407–413

    Google Scholar 

  14. Darboux I, Barthalay Y, Piovant M, Hipeau-Jacquotte R (1996) The structure–function relationships in Drosophila neurotactin show that cholinesterasic domains may have adhesive properties. EMBO J 15(18):4835–4843

    Google Scholar 

  15. Day T, Greenfield SA (2004) Bioactivity of a peptide derived from acetylcholinesterase in hippocampal organotypic cultures. Exp Brain Res 155(4):500–508

    Google Scholar 

  16. Day T, Greenfield SA (2003) A peptide derived from acetylcholinesterase induces neuronal cell death: characterization of possible mechanisms. Exp Brain Res 153(3):334–342

    Google Scholar 

  17. De Brito IA, Maksoud JG (1987) Evolution with age of the acetylcholinesterase activity in rectal suction biopsy in Hirschsprung’s disease. J Pediatr Surg 22(5):425–430

    Google Scholar 

  18. De Ferrari GV, Canales MA, Shin I, Weiner LM, Silman I, Inestrosa NC (2001) A structural motif of acetylcholinesterase that promotes amyloid beta-peptide fibril formation. Biochemistry 40:10447–10457

    Google Scholar 

  19. De Wet PM, Boston VE, Rode H, Davies MR, Cywes S (1980) The determination of total cholinesterase in rectal biopsy tissue from patients with Hirschsprung’s disease. S Afr Med J 57(7):240–242

    Google Scholar 

  20. Dobbins W, Bill A (1965) Diagnosis of Hirschsprung’s disease excluded by rectal suction biopsy. N Engl J Med 272(19):990–993

    Google Scholar 

  21. Dodero P, Martuccielo G (1988) Hirschsprung’s disease: alpha-naphtylesterase activity for enzyme-histochemical evaluation of the extent of the aganglionic segment during surgery. Pediatr Surg Int 4:269–274

    Google Scholar 

  22. Drews U (1975) Cholinesterases in embryonic development. Prog Histochem Cytochem 7:1–53

    CAS  Google Scholar 

  23. Duclert A, Changeux JP (1995) Acetylcholine receptor gene expression at the developing neuromuscular junction. Physiol Rev 75(2):339–368

    CAS  PubMed  Google Scholar 

  24. Elema JD, de Vries JA, Vos LJM (1973) Intensity and proximal extension of acetylcholinesterase activity in the mucosa of the rectosigmoid in Hirschsprung’s disease. J Pediatr Surg 8(3):361–366

    Google Scholar 

  25. Facer P, Knowles CH, Thomas PK, Tam PK, Williams NS, Anand P (2001) Decreased tyrosine kinase C expression may reflect developmental abnormalities in Hirschsprung’s disease and idiopathic slow-transit constipation. Br J Surg 88(4):545-552

    Google Scholar 

  26. Fadda B, Pistor G, Meier-Ruge W, Hoffmann von K- H, Muntefering H, Espinosa R (1987) Symptoms, diagnosis and therapy of neuronal intestinal dysplasia masked by Hirschsprung’s disease. Pediatr Surg Int 2:76–80

    Google Scholar 

  27. Fayuk D, Yakel JL (2004) Regulation of nicotinic acetylcholine receptor channel function by acetylcholinesterase inhibitors in rat hippocampal CA1 interneurons. Mol Pharmacol 66(3):658–666

    Google Scholar 

  28. Fernandez HL, Donoso JA (1988) Exercise selectively increases G4 AChE activity in fast-twitch muscle. J Appl Physiol 80:357–362

    Google Scholar 

  29. Friedrich U, Vetter R, Weiss HJ, Hentschel H (1994) Quantitative investigations of acetylcholinesterase activities in colorectal malformations. Eur J Pediatr Surg 4:352–357

    Google Scholar 

  30. Garrett JR, Howard ER, Nixon HH (1969) Histochemical diagnosis of Hirschsprung’s disease. Lancet 2(7617):436

    Google Scholar 

  31. Gisiger V, Belisle M, Gardiner PF (1994) Acetylcholinesterase adaptation to voluntary wheel running is proportional to the volume of activity in fast, but not slow, rat hindlimb muscles. Eur J Neurosci 6(5):673–680

    Google Scholar 

  32. Goto S, Ikeda I, Toyohara T (1983) Histochemical confirmation of acetylcholinesterase-activity in rectal suction biopsy from neonates with Hirschsprung’s disease. Z Kinderchir 39:246–249

    Google Scholar 

  33. Goto S, Ikeda K (1985) Histochemical acetylcholinesterase activity in the mucosa of the resected bowel in Hirschsprung’s disease. An analysis of 30 cases. Z Kinderchir 40(1):26–30

    Google Scholar 

  34. Greenfield S, Vaux DJ (2002) Parkinson’s disease, Alzheimer’s disease and motor neurone disease: identifying a common mechanism. Neuroscience 113(3):485–492

    Google Scholar 

  35. Hess R, Scarpelli DG, Pearse AGE (1958) The cytochemical localization of oxidative enzymes. II. Pyridine nucleotide-linked dehydrogenases. J Biophys Biochem Cytol 4(6):753–760

    Google Scholar 

  36. Hirsig J, Briner J, Rickham PP (1979) Problems in the diagnosis of Hirschsprung’s disease due to false-negative acetylcholinesterase reaction in suction biopsy in neonates. Z Kinderchir 26(3):242–247

    Google Scholar 

  37. Huntley CC, Shaffner LD, Challa VR, Lyerly AD (1982) Histochemical diagnosis of Hirschsprung disease. Pediatrics 69(6):755–761

    Google Scholar 

  38. Ikawa H, Kawano H, Takeda Y, Masuyama H, Watanabe K, Endo M, Yokoyama J, Kitajima M, Uyemura K, Kawamura K (1997) Impaired expression of neural cell adhesion molecule L1 in the extrinsic nerve fibres in Hirschsprung’s disease. J Pediatr Surg 32:542–545

    Google Scholar 

  39. Ikawa H, Kim SH, Hendren WH, Donahoe PK (1986) Acetylcholinesterase and manometry in the diagnosis of the constipated child. Arch Surg 121(4):435–438

    Google Scholar 

  40. Inestrosa NC, Alvarez A, Perez CA, Moreno RD, Vicente M, Linker C, Casanueva OI, Soto C, Garrido J (1996) Acetylcholinesterase accelerates assembly of amyloid beta-peptides into Alzheimer’s fibrils: possible role of the peripheral site of the enzyme. Neuron 16:881–891

    Google Scholar 

  41. Ito Y, Tatekawa I, Nishiyama F, Hirano H (1987) Ultrastructural localization of acetylcholinesterase activity in Hirschsprung’s disease. Arch Pathol Lab Med 111(2):161–165

    Google Scholar 

  42. Johnson G, Moore SW (2000) Cholinesterases modulate cell adhesion in human neuroblastoma cells in vitro. Int J Dev Neurosci 18(8):781–790

    Google Scholar 

  43. Johnson G, Moore SW (2004) Identification of a structural site on acetylcholinesterase that promotes neurite outgrowth and binds laminin-1 and collagen IV. Biochem Biophys Res Commun 319(2):448–455

    Google Scholar 

  44. Johnson G, Moore SW (2003) Human acetylcholinesterase binds to mouse laminin-1 and human collagen IV by an electrostatic mechanism at the peripheral anionic site. Neurosci Lett 337(1):37–40

    Google Scholar 

  45. Kamijo K, Hiatt RB, Koelle GB(1953) Congenital megacolon. A comparison of the specific and hypertrophied segments with respect to cholinesterase activities and sensitivities to acetylcholine, DFP and the barium ion. Gastroenterology 24:173

    Google Scholar 

  46. Karnowsky MJ, Roots L (1964) A “direct-colouring” thiocholine method for cholinesterase. J Histochem Cytochem 12:219

    CAS  PubMed  Google Scholar 

  47. Kaufer D, Friedman A, Seidman S, Soreq H (1998) Acute stress facilitates long-lasting changes in cholinergic gene expression. Nature 393(6683):373–377

    Google Scholar 

  48. Kawashima K, Fujii T (2000) Extraneuronal cholinergic system in lymphocytes. Pharmacol Ther 86(1):29–48

    Article  CAS  PubMed  Google Scholar 

  49. Klegeris A, Budd TC, Greenfield SA (1996) Acetylcholinesterase-induced respiratory burst in macrophages: evidence for the involvement of the macrophage mannose-fucose receptor. Biochim Biophys Acta 1289(1):159–168

    Google Scholar 

  50. Kobayashi H, O’Briain DS, Hirakawa H, Wang Y, Puri P (1994) A rapid technique of acetylcholinesterase staining. Arch Pathol Lab Med 118(11): 1127–1129

    Google Scholar 

  51. Kobayashi H, Yamataka A, Lane GJ, Miyano T (2004) Inflammatory changes secondary to postoperative complications of Hirschsprung’s disease as a cause of histopathologic changes typical of intestinal neuronal dysplasia. J Pediatr Surg 39(2):152–156

    Google Scholar 

  52. Koenigsberger C, Chiappa S, Brimijoin S (1997) Neurite differentiation is modulated in neuroblastoma cells engineered for altered acetylcholinesterase expression. J Neurochem 69:1389–1397

    Google Scholar 

  53. Kurer MH, Lawson JO, Pambakian H (1986) Suction biopsy in Hirschsprung’s disease. Arch Dis Child 61:(1):83–84

    Google Scholar 

  54. Lake BD, Malone MT, Risdon RA (1989) The use of acetylcholinesterase (AChE) in the diagnosis of Hirschsprung’s disease and intestinal neuronal dysplasia. Pediatr Pathol 9:351–354

    Google Scholar 

  55. Lake BD, Puri P, Nixon HH, Claireaux AE (1978) Hirschsprung’s disease: an appraisal of histochemically demonstrated acetylcholinesterase activity in suction rectal biopsy specimens as an aid to diagnosis. Arch Pathol Lab Med 102(5):244–247

    Google Scholar 

  56. Larsson LT, Malmfors G, Sundler F(1988) Neuropeptide Y, calcitonin gene-related peptide, and galanin in Hirschsprung’s disease: an immunocytochemical study. J Pediatr Surg 23(4):342–345

    Google Scholar 

  57. Layer PG, Kaulich S (1991) Cranial nerve growth in birds is preceded by cholinesterase expression during neural crest cell migration and the formation of an HNK-1 scaffold. Cell Tissue Res 265(3):393–407

    Google Scholar 

  58. Layer PG, Sporns O (1987) Spatiotemporal relationship of embryonic cholinesterases with cell proliferation in chicken brain and eye. Proc Natl Acad Sci USA 84:284–288

    Google Scholar 

  59. Layer PG, Weikert T, Alber R (1993) Cholinesterases regulate neurite growth of chick nerve cells in vitro by means of a non-enzymatic mechanism. Cell Tissue Res 273:219–226

    Google Scholar 

  60. Lazar M, Vigny M (1980) Modulation of the distribution of acetylcholinesterase molecular forms in a murine neuroblastoma x sympathetic ganglion cell hybrid cell line. J Neurochem 35:1067–1079

    Google Scholar 

  61. Li Y, Liu L, Kang J, Sheng JG, Barger SW, Mrak RE, Griffin WST (2000) Neuronal-glial interactions mediated by interleukin-1 enhance neuronal acetylcholinesterase activity and mRNA expression. J Neurosci 20(1):149–155

    Google Scholar 

  62. Luo Z, Fuentes ME, Taylor P (1994) Regulation of acetylcholinesterase mRNA stability by calcium during differentiation from myoblasts to myotubes. J Biol Chem 269:27216–27223

    Google Scholar 

  63. MacKenzie JM, Dixon MF(1987) An immunohistochemical study of the enteric neural plexi in Hirschsprung’s disease. Histopathology 11(10):1055–1066

    Google Scholar 

  64. Meier-Ruge W (1968) Das Megacolon: seine Diagnose und Pathophysiolgie. Virchows Arch A Pathol Anat Histopathol 344:67–85

    Google Scholar 

  65. Meier-Ruge W, Lutterbeck PM, Herzog B, Morger R, Moser R, Scharli A (1972) Acetylcholinesterase activity in suction biopsies of the rectum in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 7(1):11–17

    Google Scholar 

  66. Moore SW (1993) The study of the etiology of post-surgical obstruction in patients with Hirschsprung’s disease. MD thesis, University of Cape Town

  67. Moore SW, Johnson G, Kaschula ROC (1996) Role of magnesium in suppressing red blood cell acetylcholinesterase in the diagnosis of Hirschsprung’s disease on tissue section. Cell Vision 3(4):324–328

    Google Scholar 

  68. Moore SW, Laing D, Kaschula ROC, Cywes S (1994) A histological grading system for the evaluation of co-existing NID with Hirschsprung’s disease. Eur J Pediatr Surg 4:293–297

    Google Scholar 

  69. Moore SW, Laing D, Melis J, Cywes S (1993) The effects of prolonged intestinal obstruction on the enteric nervous system (ENS) in rats. J Pediatr Surg 28(9):1196–1199

    Google Scholar 

  70. Moore SW, Millar AJW, Cywes S (1994) Long term clinical, manometric and histologic evaluation of obstructive symptoms in the postoperative Hirschsprung’s patient. J Paediatr Surg 29(1):106–111

    Google Scholar 

  71. Munakata K, Okabe I, Morita K (1978) Histologic studies of rectocolic aganglionosis and allied diseases. J Pediatr Surg 13(1):67–75

    Google Scholar 

  72. Nachlas MM, Tsou KC, de Souse E, Cheng CS, Seligman AM (1957) Cytochemical demonstration of succinic dehydrogenase by the use of a new P-nitrophenyl substituted ditetrazole. J Histochem Cytochem 5:420–436

    Google Scholar 

  73. Nemeth L, O’Briain S, Puri P (1999) Whole-mount NADPH-diaphorase histochemistry is a reliable technique for the intraoperative evaluation of extent of aganglionosis. Pediatr Surg Int 15(3–4):195–197

    Google Scholar 

  74. Nemeth L, Puri P (2000) The innervation of human bowel mucosa and its alterations in Hirschsprung’s disease using a whole-mount preparation technique. Pediatr Surg Int 16(4):277–281

    Google Scholar 

  75. Niemi M, Kouvalainen K, Hjeldt L (1961) Cholinesterases and monoamine oxidase in congenital megacolon. J Path Bact 82:363

    Google Scholar 

  76. Noblett H (1969) A rectal suction biopsy tube for use in the diagnosis of Hirschsprung’s disease. J Pediatr Surg 4(4):406–409

    Google Scholar 

  77. Okamoto N, Wada Y, Goto M (1997) Hydrocephalus and Hirschsprung’s disease in a patient with a mutation of L1CAM. J Med Genet 34(8):670–671

    Google Scholar 

  78. Oue T, Yoneda A, Shima H, Puri P (2000) Muscarinic acetylcholine receptor expression in aganglionic bowel. Pediatr Surg Int 16(4):267–271

    Google Scholar 

  79. Paraoanu LE, Layer PG (2004) Mouse acetylcholineserase interacts in yeast with the extracellular matrix component laminin-1beta. FEBS Lett 576(1–2):161–164

    Google Scholar 

  80. Parikh DH, Leibl M, Tam PK, Edgar D (1995) Abnormal expression and distribution of nidogen in Hirschsprung’s disease. J Pediatr Surg 30(12):1687–1693

    Google Scholar 

  81. Parikh DH, Tam PK, Lloyd DA, Van Velzen D, Edgar DH (1992) Quantitative and qualitative analysis of the extracellular matrix protein, laminin, in Hirschsprung’s disease. J Pediatr Surg 27(8):991–995

    Google Scholar 

  82. Patrick WJA, Besley GTN, Smith IL (1980) Histochemical diagnosis of Hirschsprung’s disease and a comparison of the histochemical and biochemical activity of acetylcholinesterase in rectal mucosal biopsies. J Clin Pathol 33:336–343

    Google Scholar 

  83. Puri P, Ohshiro K, Wester T (1998) Hirschsprung’s disease: a search for etiology. Semin Pediatr Surg 7(3):140–147

    Google Scholar 

  84. Rintala R, Rapola J, Louhimo I (1989) Neuronal intestinal dysplasia. Prog Pediatr Surg 24:186–192

    Google Scholar 

  85. Robey SS, Kuhadja F, Yardley JH (1988) Immunoperoxidase stains of ganglion cells and abnormal nerve proliferations in Hirschsprung’s disease. Hum Pathol 19:432–437

    Google Scholar 

  86. Rolle U, Piotrowska AP, Puri P (2003) Abnormal vasculature in intestinal neuronal dysplasia. Pediatr Surg Int 19(5):345–348

    Google Scholar 

  87. Schofield DE, Devine W, Yunis EJ (1990) Acetylcholinesterase stained suction rectal biosies in the diagnosis of Hirschsprung’s disease. J Pediatr Gastroenterol Nutr 11:221–228

    Google Scholar 

  88. Schofield DE, Yunis EJ (1991) Intestinal neuronal dysplasia. J Pediatr Gastroenterol Nutr 12:182–189

    Google Scholar 

  89. Soreq H, Patinkin D, Lev-Lehman E, Grifman M, Ginzberg D, Eckstein F, Zakut H (1994) Antisense oligonucleotide inhibition of acetylcholinesterase gene expression induces progenitor cell expansion and suppresses hematopoietic apoptosis ex vivo. Proc Natl Acad Sci USA 91:7907–7911

    Google Scholar 

  90. Srivatsan M, Peretz B (1997) Acetylcholinesterase promotes regeneration of neurites in cultured adult neurons of Aplysia. Neuroscience 77:9211–9231

    Google Scholar 

  91. Sternfeld M, Ming G, Song H, Sela K, Timberg R, Poo M, Soreq H (1998) Acetylcholinesterase enhances neurite outgrowth and synapse development through alternative contributions of its hydrolytic capacity, core protein and variable C termini. J Neurosci 18:1240–1249

    Google Scholar 

  92. Storsteen KA, Kerohan JW, Bargen JA (1953) The myenteric plexus in ulcerative colitis. Surg Gynae Obstets 97:335–343

    Google Scholar 

  93. Sun CC, Caniano DA, Hill JL (1987) Intestinal aganglionosis: a histologic and acetylcholinesterase histochemical study. Pediatr Pathol 7:421–435

    Google Scholar 

  94. Taguchi T, Tanaka K, Ikeda K (1985) Immunohistochemical study of neuron specific enolase and S-100 protein in Hirschsprung’s disease. Virchows Arch A Pathol Anat Histopathol 405(4):399–409

    Google Scholar 

  95. Tam PK, Boyd GP (1991) New insights into peptidergic abnormalities in Hirschsprung’s disease by wholemount immunohistochemistry. J Pediatr Surg 26(5):595–597

    Google Scholar 

  96. Toorman J, Bots GThAM, Vio PMA (1977) Acetylcholinesterase activity in rectal mucosa of children with obstipation. Virchows Arch A Pathol Anat Histopathol 376:159–164

    Google Scholar 

  97. Touloukian RJ (1975) Acquired aganglionic megacolon in a premature infant: report of a case. Pediatrics 56(3):459–462

    Google Scholar 

  98. Van der Staak FHJ (1981) Reliability of the acetylcholinesterase (ACE) reaction in rectal mucosal biopsies for the diagnosis of Hirschsprung’s disease. Z Kinderchir 34:36–42

    Google Scholar 

  99. Volpicelli-Daley LA, Duysen EG, Lockridge O, Levey AI (2003) Altered hippocampal muscarinic receptors in acetylcholinesterase-deficient mice. Ann Neurol 53(6):788–796

    Google Scholar 

  100. von der Kammer H, Demiralay C, Andresen B, Albrecht C, Mayhaus M, Nitsch RM (2001) Regulation of gene expression by muscarinic acetylcholine receptors. Biochem Soc Symp 67:131–140

    Google Scholar 

  101. Wakely PE Jr, McAdams AJ (1984) Acetylcholinesterase histochemistry and the diagnosis of Hirschsprung’s disease: a 3 1/2-year experience. Pediatr Pathol 2(1):35–46

    Google Scholar 

  102. Wells FE, Addison GM (1986) Acetylcholinesterase activity in rectal biopsies: an assessment of its diagnostic value in Hirschsprung’s disease. J Pediatr Gastroenterol Nutr 5:912–919

    Google Scholar 

  103. Yanai T, Kobayashi H, Yamataka A, Lane GJ, Miyano T, Hayakawa T, Satoh K, Kase Y, Hatano M (2004) Acetylcholine-related bowel dysmotility in homozygous mutant NCX/HOX11L.1-deficient (NCX-/-) mice-evidence that acetylcholine is implicated in causing intestinal neuronal dysplasia. J Pediatr Surg 39(6):927–930

    Google Scholar 

  104. Yang L, He HY, Zhang XJ (2002) Increased expression of intranuclear acetylcholinesterase involved in apoptosis of SK-N-SH cells. Neurosci Res 42:261–268

    Google Scholar 

  105. Yang X, Fyodorov D, Deneris ES (1995) Transcriptional analysis of acetylcholine receptor alpha 3 gene promoter motifs that bind Sp1 and AP2. J Biol Chem 270:8514–8520

    Google Scholar 

  106. Young HM, Anderson RB, Anderson CR (2004) Guidance cues involved in the development of the peripheral autonomic nervous system. Auton Neurosci 112:1–14

    Google Scholar 

  107. Zhang HY, Brimijoin S, Tang XC (2003) Apoptosis induced by beta-amyloid 25–35 in acetylcholinesterase-overexpressing neuroblastoma cells. Acta Pharmacol Sin 24(9):853–858

    Google Scholar 

  108. Zhang XJ, Yang L, Zhao Q, Caen JP, He HY, Jin QH, Guo LH, Alemany M, Zhang LY,Shi YF (2002) Induction of acetylcholinesterase expression during apoptosis in various cell types. Cell Death Differ 9(8):790–800

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S.W. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moore, S., Johnson, G. Acetylcholinesterase in Hirschsprung’s disease. Ped Surgery Int 21, 255–263 (2005). https://doi.org/10.1007/s00383-005-1383-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-005-1383-z

Keywords

Navigation