Skip to main content
Log in

Increased expression of ICAM-1 and VCAM-1 in the lung of nitrofen-induced congenital diaphragmatic hernia in rats

  • Original Article
  • Published:
Pediatric Surgery International Aims and scope Submit manuscript

Abstract

Recently, increased expression of inflammatory cytokine, tumor necrosis factor (TNF)-α, has been reported in both humans and animal models with CDH and the decreased TNF-α expression in CDH lung after antenatal dexamethasone (Dex) treatment. Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 are induced by several inflammatory cytokines such as TNF-α. The aim of this study was to investigate pulmonary ICAM-1 and VCAM-1 expression in CDH lung in rats and to determine the effect of antenatal glucocorticoid. CDH model was induced in pregnant rats following administration of nitrofen on day 9.5 of gestation. In control animals, the same dose of olive oil was given without nitrofen. Dex (0.25 mg/kg) was given on day 18.5 and 19.5 of gestation. RT-PCR was performed to evaluate the relative amount of ICAM-1 and VCAM-1 mRNA expression. Fluorescein immunohistochemistry using anti-ICAM-1 and anti-VCAM-1 antibody was performed using light and confocal microscopy. ICAM-1 and VCAM-1 mRNA expression and ICAM-1 and VCAM-1 immunoreactivity were markedly increased in CDH lung compared to controls. Dex downregulated the expression of both adhesion molecules in the hypoplastic lung. Increased ICAM-1 and VCAM-1 mRNA expression in hypoplastic lungs would suggest that the increased local synthesis of pulmonary adhesion molecules may induce respiratory distress in CDH. Decreased expression of adhesion molecules in CDH lungs after Dex treatment suggests that antenatal glucocorticoids therapy may improve pulmonary immaturity and associated respiratory distress in nitrofen-induced CDH lung.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Puri P (1994) Congenital diaphragmatic hernia. Curr Prob Surg 10:785–856

    Google Scholar 

  2. Asabe K, Tsuji K, Handa N, Kurosawa N, Kajiwara M (1997) Immunohistochemical distribution of surfactant apoprotein-A in congenital diaphragmatic hernia. J Pediatr Surg 32:667–672

    CAS  PubMed  Google Scholar 

  3. Millar AB, Foley NM, Singer M, Johnson NM, Meager A, Rock GA (1989) Tumor necrosis factor in bronchopulmonary secretions of patients with adult respiratory distress syndrome. Lancet 2:712–714

    CAS  PubMed  Google Scholar 

  4. Murch SH, McDonald TT, Wood CB, Costeloe KL (1992) Tumor necrosis factor in the bronchoalveolar secrations of infants with the respiratory distress syndrome and the effect of dexamethasone treatment. Thorax 47:44–47

    CAS  PubMed  Google Scholar 

  5. Piguet PF, Ribaux C, Karpuz V, Grau GE, Kapanci Y (1993) Expression and localization of tumor necrosis factor-α and its mRNA in idiopathic pulmonary fibrosis. Am J Pathol 143:651–655

    CAS  PubMed  Google Scholar 

  6. Ohshiro K, Miyazaki E, Taira Y, Puri P (1998) Upregulated tumor necrosis factor-α gene expression in the hypoplastic lung in patients with congenital diaphragmatic hernia. Pediatr Surg Int 14:21–24

    Article  CAS  PubMed  Google Scholar 

  7. Shima H, Ohshiro K, Taira Y, Miyazaki E, Oue T, Puri P (1999) Antenatal dexamethasone suppresses tumor necrosis factor-α expression in hypoplastic lung in nitrofen-induced diaphragmatic hernia in rats. Pediatr Res 46:633–637

    CAS  PubMed  Google Scholar 

  8. Zimmerman GA, Albertine KH, Carveth HJ, Carveth HJ, Gill EA, Grissom CK, Hoidal JR, Imaizumi T, Maloney CG, McIntyre TM, Michael JR, Orme JF, Prescott SM, Topham MS (1999) Endothelial activation in ARDS. Chest 116:18–24

    Google Scholar 

  9. Donnelly SC, Haslett C, Dransfield I, Robertson CE, Carter DC, Ross JA, Grants IS, Tedder TF (1994) Role of selectins in development of adult respiratory distress syndrome. Lancet 344:215–219

    CAS  PubMed  Google Scholar 

  10. Luscinskas FW, Gimbrone MA Jr (1996) Endothelial-dependent mechanism in chronic inflammatory leukocyte recruitment. Annu Rev Med 47:413–421

    Article  CAS  PubMed  Google Scholar 

  11. Adams DH, Show S (1994) Leucocyte-endothelial interactions and regulation of leucocyte migration. Lancet 343:831–836

    CAS  PubMed  Google Scholar 

  12. Van de Strope A, Van de Saag PT (1996) Intercellular adhesion molecule-1. J Mol Med 74:13–33

    PubMed  Google Scholar 

  13. Weller PF, Rand TH, Goelz SE, Chi-Rosso G, Lobb RR (1991) Human eosinophil adherence to vascular endothelium mediated by binding to vascular cell adhesion molecule 1 and endothelial leukocyte adhesion molecule 1. Proc Natl Acad Sci USA 88:7430–7433

    CAS  PubMed  Google Scholar 

  14. Bochner BS, Leuscinskas FW, Gimbrone MA Jr, Newman W, Sterbinsky SA, Derse-Anthony CP, Klunk D, Schleimer RP (1991) Adhesion of human basophils, eosinophils, and neutrophils to interleukin 1-activated human vascular endothelial cells: contributions of endothelial cells adhesion molecules. J Exp Med 173:1553–1557

    CAS  PubMed  Google Scholar 

  15. Dobrina A, Menegazzi R, Carlos TM, Nardon E, Cramer R, Zacchi T, Harlan JM, Patriarca P (1991) Mechanism of eosinophil adherence to cultured vascular endothelial cells. J Clin Invest 88:20–26

    CAS  PubMed  Google Scholar 

  16. Thornhill MH, Wellicome SM, Mahiouz DL, Lanchbury JS, Kyan-Aung U, Haskard DO (1991) Tumor necrosis factor combines with IL-4 or INF-gamma to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and -independent binding mechanisms. J Immunol 146:592–598

    CAS  PubMed  Google Scholar 

  17. Yu ML, Limper AH (1997) Pneumocystis carinii induces ICAM-1 expression in lung epithelial cells through a TNF-α mediated mechanism. Am J Physiol 273:L1103–1111

    CAS  PubMed  Google Scholar 

  18. Look DC, Rapp SR, Keller BT, Holtzman MJ (1992) Selective induction of intercellular adhesion molecule-1 by interferon-gamma in human airway epithelial cells. Am J Pysiol 263:L79–87

    CAS  Google Scholar 

  19. Dalhoff K, Bohnet S, Braun J, Kreft B, Wiessmann KJ (1993) Intercellular adhesion molecule 1 (ICAM-1) in the pathogenesis of mononuclear cell alveolitis in pulmonary sarcoidosis. Thorax 48:1140–1144

    CAS  PubMed  Google Scholar 

  20. Capsi E, Schreyer P, Weinraub Z, Reif R, Levi I, Mundel G (1976) Prevention of the respiratory distress syndrome in premature infants by antepartum glucocorticoid therapy. Br J Obstet Gynecol 83:187–193

    Google Scholar 

  21. Suen HC, Bloch KD, Donahoe PK (1994) Antenatal glucocorticoid corrects pulmonary immaturity in experimentally induced congenital diaphragmatic hernia in rats. Pediatr Res 35:523–529

    CAS  PubMed  Google Scholar 

  22. Losty PD, Suen HC, Manganaro TF, Donahoe PK, Schnitzer JJ (1995) Prenatal hormonal therapy improves pulmonary compliance in the nitrofen-induced CDH rat model. J Pediatr Surg 30:420–426

    CAS  PubMed  Google Scholar 

  23. Schnitzer JJ, Hedrick HL, Pacheco BA, Losty PD, Ryan DP, Doody DP, Donahoe PK (1996) Prenatal glucocorticoid therapy reverses pulmonary immaturity in congenital diaphragmatic hernia in fetal sheep. Ann Surg 224:430–439

    Article  CAS  PubMed  Google Scholar 

  24. Taira Y, Miyazaki E, Ohshiro K, Yamataka T, Puri P (1998) Administration of antenatal glucocorticoids prevents pulmonary artery structural changes in nitrofen-induced congenital diaphragmatic hernia in rats. J Pediatr Surg 33:1052–1056

    CAS  PubMed  Google Scholar 

  25. Okoye BO, Losty PD, Lloyd DA, Gosney JR (1998) Effect of prenatal glucocorticoids on pulmonary vascular muscularisation in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 33:76–80

    CAS  PubMed  Google Scholar 

  26. Grau GE, Mili N, Lou JN, Morel DR, Ricou B, Lucas R, Suter PM (1996) Phenotypic and functional analysis of pulmonary microvascular endothelial cells from patients with acute respiratory distress syndrome. Lab Invest 74:761–770

    CAS  PubMed  Google Scholar 

  27. Pitzalis C, Kingsley G, Panayi G (1994) Adhesion molecules in rheumatoid arthritis: role in pathogenesis and prospects for therapy. Ann Rheum Dis 53:287–288

    CAS  PubMed  Google Scholar 

  28. Koch AE, Burrows JC, Haines GK, Carlos TM, Harlan JM, Leibovich SJ (1991) Immunolocalization of endothelial and leukocyte adhesion molecules in human rheumatoid and osteoarthritic synovial tissues. Lab Invest 64:313–320

    CAS  PubMed  Google Scholar 

  29. Alegre M, Depierreux M, Florquin S, Najdovski T, Vandenabeele P, Abramowicz D, Leo O, Deschodt-Lanckman M, Goldman M (1990) Acute toxicity of anti-CD3 monoclonal antibody in mice: a model for OKT3 first dose reactions. Transplant Proc 22:1920–1921

    CAS  PubMed  Google Scholar 

  30. Baur FM, Brenner B, Goetze-Speer B, Neu S, Speer CP (1998) Natural porcine surfactant (Curosurf) down-regulates mRNA of tumor necrosis factor-α (TNF-α) and TNF-α type II receptor in lipopolysaccharide-stimulated monocytes. Pediatr Res 44:32–36

    CAS  PubMed  Google Scholar 

  31. Balibrea-Cantero JL, Arias-Diaz J, Garcia C, Torres-Melero J, Simon C, Rodriguez JM, Vara E (1994) Effect of pentoxifylline on the inhibition of surfactant synthesis induced by TNF-α in human type II pneumocytes. Am J Respir Crit Care Med 149:699–706

    CAS  PubMed  Google Scholar 

  32. Asabe K, Hashimoto S, Suita S, Sueishi K (1996) Maternal dexamethasone treatment enhances the expression of surfactant apoprotein A in the hypoplastic lung of rabbit fetuses induced by oligohydramnios. J Pediatr Surg 31:1369–1375

    CAS  PubMed  Google Scholar 

  33. Guarino N, Oue T, Shima H, Puri P (2000) Antenatal Dexamethasone enhances surfactant protein synthesis in the hypoplastic lung of nitrofen-induced diaphragmatic hernia in rats. J Pediatr Surg 35:1468–1473

    CAS  PubMed  Google Scholar 

  34. Cronstein BN, Kimmel SC, Levin RI, Martiniuk F, Weissmann G (1992) A mechanism for the anti-inflammatory effects of corticosteroids: the glucocorticoid receptor regulates leukocyte adhesion to endothelial cells and expression of endothelial-leukocyte adhesion molecule 1 and intercellular adhesion molecule 1. Proc Natl Acad Sci USA 89:9991–9995

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prem Puri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Unemoto, K., Sakai, M., Shima, H. et al. Increased expression of ICAM-1 and VCAM-1 in the lung of nitrofen-induced congenital diaphragmatic hernia in rats. Ped Surgery Int 19, 365–370 (2003). https://doi.org/10.1007/s00383-003-1012-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00383-003-1012-7

Keywords

Navigation