Abstract
IPCC reports and climate change impact studies generally exploit ensembles of climate projections based on different socio-economic pathways and climate models, which provide the temporal evolution of plausible future climates. However, The Paris Agreement and many national and international commitments consider adaptation and mitigation plans targeting future global warming levels. Model uncertainty and scenario uncertainty typically affect both the crossing-time of future warming levels and the climate features at a given global warming level. In this study, we assess the uncertainties in a multi-model multi-member CMIP6 ensemble (MME) of seasonal and regional temperature and precipitation projections. In particular, we show that the uncertainties of regional temperature projections are considerably reduced if considered at a specific global warming level, with a limited effect of the emission scenarios and a reduced influence of GCM sensitivity. We also describe in detail the large uncertainties related to the different behavior of the GCMs in some regions.







Similar content being viewed by others
Data availability
All datasets used in this research can be accessed via the following websites: CMIP6 model outputs at https://esgf-node.ipsl.upmc.fr/projects/cmip6-ipsl/. Access to HadCRUT5 dataset is detailed in Morice et al. (2021).
Code availability
Average temperatures at the planetary level and seasonal values at the \(1^{\circ } \times 1^{\circ }\) grid scale are obtained from GCM simulations using Climate Data Operators (CDO Schulzweida 2023). The cubic splines are applied with the function smooth.spline in R software (R Core Team 2022) with the df argument equal to 6. The QUALYPSO package is available at https://cran.r-project.org/package=QUALYPSO.
References
Baker HS, Millar RJ, Karoly DJ, et al (2018) Higher \({\rm CO}_2\) concentrations increase extreme event risk in a \(1.5 ^{\circ }\)C world. Nat Clim Change 8(7):604–608. https://doi.org/10.1038/s41558-018-0190-1. https://www.nature.com/articles/s41558-018-0190-1
Bichet A, Diedhiou A, Hingray B et al (2020) Assessing uncertainties in the regional projections of precipitation in CORDEX-AFRICA. Clim Change 162(2):583–601. https://doi.org/10.1007/s10584-020-02833-z
Brunner L, Pendergrass AG, Lehner F et al (2020) Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst Dyn 11(4):995–1012. https://doi.org/10.5194/esd-11-995-2020. https://esd.copernicus.org/articles/11/995/2020/
Collins M, Knutti R, Arblaster J, et al (2013) Long-term climate change: projections, commitments and irreversibility. In: Climate change 2013—the physical science basis: contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, p 1029–1136. https://research.monash.edu/en/publications/long-term-climate-change-projections-commitments-and-irreversibil
Colman R, McAvaney B (2009) Climate feedbacks under a very broad range of forcing. Geophys Res Lett 36(1). https://doi.org/10.1029/2008GL036268
Deser C, Phillips A, Bourdette V et al (2012) Uncertainty in climate change projections: the role of internal variability. Clim Dyn 38(3–4):527–546. https://doi.org/10.1007/s00382-010-0977-x
Dosio A, Fischer EM (2018) Will half a degree make a difference? Robust projections of indices of mean and extreme climate in europe under \(1.5^{\circ }\)C, \(2^{\circ }\)C, and \(3^{\circ }\)C global warming. Geophys Res Lett 45(2):935–944. https://doi.org/10.1002/2017GL076222
Evin G, Hingray B, Blanchet J et al (2019) Partitioning uncertainty components of an incomplete ensemble of climate projections using data augmentation. J Clim 32(8):2423–2440. https://doi.org/10.1175/JCLI-D-18-0606.1
Evin G, Somot S, Hingray B (2021) Balanced estimate and uncertainty assessment of European climate change using the large EURO-CORDEX regional climate model ensemble. Earth Syst Dyn 12(4):1543–1569. https://doi.org/10.5194/esd-12-1543-2021. https://esd.copernicus.org/articles/12/1543/2021/
Frieler K, Meinshausen M, Golly A et al (2013) Limiting global warming to 2°C is unlikely to save most coral reefs. Nat Clim Change 3(2):165–170. https://doi.org/10.1038/nclimate1674. https://www.nature.com/articles/nclimate1674
Gregory JM, Andrews T (2016) Variation in climate sensitivity and feedback parameters during the historical period. Geophys Res Lett 43(8):3911–3920. https://doi.org/10.1002/2016GL068406
Gregory JM, Huybrechts P, Raper SCB (2004) Threatened loss of the Greenland ice-sheet. Nature 428(6983):616–616. https://doi.org/10.1038/428616a. https://www.nature.com/articles/428616a
Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1107. https://doi.org/10.1175/2009BAMS2607.1
Hawkins E, Sutton R (2011) The potential to narrow uncertainty in projections of regional precipitation change. Clim Dyn 37(1–2):407–418. https://doi.org/10.1007/s00382-010-0810-6
Herger N, Sanderson BM, Knutti R (2015) Improved pattern scaling approaches for the use in climate impact studies. Geophys Res Lett 42(9):3486–3494. https://doi.org/10.1002/2015GL063569
Hingray B, Saïd M (2014) Partitioning internal variability and model uncertainty components in a multimember multimodel ensemble of climate projections. J Clim 27(17):6779–6798. https://doi.org/10.1175/JCLI-D-13-00629.1
IPCC (2018) IPCC special report on the impacts of global warming of \(1.5 ^{\circ }\)C above pre-industrial levels and related global greenhouse gas emission pathways. In: Masson-Delmotte V, Zhai P, Pörtner HO, Roberts D, Skea J, Shukla PR, Pirani A, Moufouma-Okia W, Péan C, Pidcock R, Connors S, Matthews JBR, Chen Y, Zhou X, Gomis MI, Lonnoy E, Maycock T, Tignor M, Waterfield T (eds) The context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty, p 151. http://www.ipcc.ch/report/sr15/
IPCC (2021) Climate change 2021: the physical science basis. In: Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekci O, Yu R, Zhou B, Masson-Delmotte V, Zhai P, Pirani A, Connors Sl, Pean C, Cerger S, Caud N, Chen Y, Goldfarb I (eds) Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York. https://doi.org/10.1017/9781009157896
Iturbide M, Gutiérrez JM, Alves LM et al (2020) An update of IPCC climate reference regions for subcontinental analysis of climate model data: definition and aggregated datasets. Earth Syst Sci Data 12(4):2959–2970. https://doi.org/10.5194/essd-12-2959-2020. https://essd.copernicus.org/articles/12/2959/2020/
James R, Washington R, Schleussner CF et al (2017) Characterizing half-a-degree difference: a review of methods for identifying regional climate responses to global warming targets. WIREs Clim Change 8(2):e45. https://doi.org/10.1002/wcc.457
Jones PD, New M, Parker DE et al (1999) Surface air temperature and its changes over the past 150 years. Rev Geophys 37(2):173–199. https://doi.org/10.1029/1999RG900002
King AD, Lane TP, Henley BJ et al (2020) Global and regional impacts differ between transient and equilibrium warmer worlds. Nat Clim Change 10(1):42–47. https://doi.org/10.1038/s41558-019-0658-7. https://www.nature.com/articles/s41558-019-0658-7. (publisher: Nature Publishing Group)
Lehner F, Deser C (2023) Origin, importance, and predictive limits of internal climate variability. Environ Res Clim 2(2):023001. https://doi.org/10.1088/2752-5295/accf30. (publisher: IOP Publishing)
Lehner F, Deser C, Maher N et al (2020) Partitioning climate projection uncertainty with multiple large ensembles and CMIP5/6. Earth Syst Dyn 11(2):491–508. https://doi.org/10.5194/esd-11-491-2020. https://esd.copernicus.org/articles/11/491/2020/. (publisher: Copernicus GmbH)
Lopez A, Suckling EB, Smith LA (2014) Robustness of pattern scaled climate change scenarios for adaptation decision support. Clim Change 122(4):555–566. https://doi.org/10.1007/s10584-013-1022-y
Mauritzen C, Zivkovic T, Veldore V (2017) On the relationship between climate sensitivity and modelling uncertainty. Tellus A: Dyn Meteorol Oceanogr 69(1):1327765. https://doi.org/10.1080/16000870.2017.1327765
Meehl GA, Senior CA, Eyring V, et al (2020) Context for interpreting equilibrium climate sensitivity and transient climate response from the CMIP6 Earth system models. Sci Adv 6(26):eaba1981. https://doi.org/10.1126/sciadv.aba1981. https://www.science.org/doi/full/10.1126/sciadv.aba1981 (publisher: American Association for the Advancement of Science)
Mitchell D, AchutaRao K, Allen M et al (2017) Half a degree additional warming, prognosis and projected impacts (HAPPI): background and experimental design. Geosci Model Dev 10(2):571–583. https://doi.org/10.5194/gmd-10-571-2017. https://gmd.copernicus.org/articles/10/571/2017/gmd-10-571-2017.html
Morice CP, Kennedy JJ, Rayner NA et al (2021) An updated assessment of near-surface temperature change from 1850: the HadCRUT5 data set. J Geophys Res Atmos 126(3):e2019JD0323. https://doi.org/10.1029/2019JD032361
Mulcahy JP, Jones CG, Rumbold ST, et al (2023) UKESM1.1: development and evaluation of an updated configuration of the UK Earth System Model. Geosci Model Dev 16(6):1569–1600. https://doi.org/10.5194/gmd-16-1569-2023. https://gmd.copernicus.org/articles/16/1569/2023/
Nikulin G, Lennard C, Dosio A, et al (2018) The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ Res Lett 13(6):065003. https://doi.org/10.1088/1748-9326/aab1b1
Paeth H, Vogt G, Paxian A et al (2017) Quantifying the evidence of climate change in the light of uncertainty exemplified by the Mediterranean hot spot region. Global Planet Change 151:144–151. https://doi.org/10.1016/j.gloplacha.2016.03.003. http://www.sciencedirect.com/science/article/pii/S0921818116300765
Pendergrass AG, Lehner F, Sanderson BM et al (2015) Does extreme precipitation intensity depend on the emissions scenario? Geophys Res Lett 42(20):8767–8774. https://doi.org/10.1002/2015GL065854
Persad GG (2023) The dependence of aerosols’ global and local precipitation impacts on the emitting region. Atmos Chem Phys 23(6):3435–3452. https://doi.org/10.5194/acp-23-3435-2023. https://acp.copernicus.org/articles/23/3435/2023/
R Core Team (2022) R: a language and environment for statistical computing. Tech. rep., R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/
Riahi K, van Vuuren DP, Kriegler E et al (2017) The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob Environ Change 42:153–168. https://doi.org/10.1016/j.gloenvcha.2016.05.009. https://www.sciencedirect.com/science/article/pii/S0959378016300681
Ribes A, Boé J, Qasmi S et al (2022) An updated assessment of past and future warming over France based on a regional observational constraint. Earth Syst Dyn 13(4):1397–1415. https://doi.org/10.5194/esd-13-1397-2022. https://esd.copernicus.org/articles/13/1397/2022/
Rigal A, Azaïs JM, Ribes A (2019) Estimating daily climatological normals in a changing climate. Clim Dyn 53(1):275–286. https://doi.org/10.1007/s00382-018-4584-6
Scafetta N (2021) Testing the CMIP6 GCM Simulations versus Surface Temperature Records from 1980–1990 to 2011–2021: High ECS Is Not Supported. Climate 9(11):161. https://doi.org/10.3390/cli9110161. https://www.mdpi.com/2225-1154/9/11/161
Schaeffer M, Hare W, Rahmstorf S, et al (2012) Long-term sea-level rise implied by \(1.5^{\circ }\)C and \(2^{\circ }\)C warming levels. Nat Clim Change 2(12):867–870. https://doi.org/10.1038/nclimate1584. https://www.nature.com/articles/nclimate1584
Schleussner CF, Lissner TK, Fischer EM, et al (2016) Differential climate impacts for policy-relevant limits to global warming: the case of \(1.5^{\circ }\)C and \(2^{\circ }\)C. Earth Syst Dyn 7(2):327–351. https://doi.org/10.5194/esd-7-327-2016. https://www.earth-syst-dynam.net/7/327/2016/
Schleussner CF, Deryng D, D’haen S, et al (2018) \(1.5^{\circ }\)C Hotspots: climate hazards, vulnerabilities, and impacts. Annu Rev Environ Resour 43(1):135–163. https://doi.org/10.1146/annurev-environ-102017-025835
Schulzweida U (2023) CDO user guide. https://doi.org/10.5281/zenodo.10020800
Seneviratne SI, Donat MG, Pitman AJ et al (2016) Allowable CO2 emissions based on regional and impact-related climate targets. Nature 529(7587):477–483. https://doi.org/10.1038/nature16542
Shi J, Tian Z, Lang X et al (2024) Projected changes in the interannual variability of surface air temperature using CMIP6 simulations. Clim Dyn 62(1):431–446. https://doi.org/10.1007/s00382-023-06923-3
Sigmond M, Anstey J, Arora V, et al (2023) Improvements in the Canadian Earth System Model (CanESM) through systematic model analysis: CanESM5.0 and CanESM5.1. Geosci Model Dev 16(22):6553–6591. https://doi.org/10.5194/gmd-16-6553-2023. https://gmd.copernicus.org/articles/16/6553/2023/
Sun C, Jiang Z, Li W, et al (2019) Changes in extreme temperature over China when global warming stabilized at \(1.5 ^{\circ }\)C and \(2.0 ^{\circ }\)C. Sci Rep 9(1):14982. https://doi.org/10.1038/s41598-019-50036-z. https://www.nature.com/articles/s41598-019-50036-z
Tebaldi C, Arblaster JM (2014) Pattern scaling: its strengths and limitations, and an update on the latest model simulations. Clim Change 122(3):459–471. https://doi.org/10.1007/s10584-013-1032-9
Tebaldi C, Knutti R (2018) Evaluating the accuracy of climate change pattern emulation for low warming targets. Environ Res Lett 13(5):055006. https://doi.org/10.1088/1748-9326/aabef2. (publisher: IOP Publishing)
Tebaldi C, O’Neill B, Lamarque JF (2015) Sensitivity of regional climate to global temperature and forcing. Environ Res Lett 10(7):074001. https://doi.org/10.1088/1748-9326/10/7/074001. (publisher: IOP Publishing)
Vautard R, Gobiet A, Sobolowski S et al (2014) The European climate under a 2 °C global warming. Environ Res Lett 9(3):034006. https://doi.org/10.1088/1748-9326/9/3/034006. (publisher: IOP Publishing)
Wartenburger R, Hirschi M, Donat MG et al (2017) Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci Model Dev 10(9):3609–3634. https://doi.org/10.5194/gmd-10-3609-2017
Wei L, Wang Y, Liu S et al (2021) Distinct roles of land cover in regulating spatial variabilities of temperature responses to radiative effects of aerosols and clouds. Environ Res Lett 16(12):124070. https://doi.org/10.1088/1748-9326/ac3f04. (publisher: IOP Publishing)
Wells CD, Jackson LS, Maycock AC et al (2023) Understanding pattern scaling errors across a range of emissions pathways. Earth System Dyn 14(4):817–834. https://doi.org/10.5194/esd-14-817-2023. https://esd.copernicus.org/articles/14/817/2023/
Yip S, Ferro CAT, Stephenson DB et al (2011) A simple, coherent framework for partitioning uncertainty in climate predictions. J Clim 24(17):4634–4643. https://doi.org/10.1175/2011JCLI4085.1
Zhu Y, Yang S (2021) Interdecadal and interannual evolution characteristics of the global surface precipitation anomaly shown by CMIP5 and CMIP6 models. Int J Climatol 41(S1):E1100–E1118. https://doi.org/10.1002/joc.6756
Acknowledgements
We thank B. Hingray at IGE for previous discussions on this subject and his feedback on the last version of the manuscript. We thank the two anonymous reviewers for their useful and constructive comments.
Funding
The authors have not disclosed any funding.
Author information
Authors and Affiliations
Contributions
GE contributed to the initial version of the study (material preparation, data collection, and analysis). All authors commented on previous versions of the manuscript and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no relevant financial interests to disclose.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Evin, G., Ribes, A. & Corre, L. Assessing CMIP6 uncertainties at global warming levels. Clim Dyn 62, 8057–8072 (2024). https://doi.org/10.1007/s00382-024-07323-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00382-024-07323-x


