Skip to main content
Log in

Response of streamflow and sediment variability to cascade dam development and climate change in the Sai Gon Dong Nai River basin

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Future changes in streamflow and sediment, influenced by anthropogenic activities and climate change, have a crucial role in watershed management. This study aimed to quantify the effects of anthropogenic and natural drivers on future streamflow and sediment changes in the tropical Sai Gon Dong Nai River basin using the Soil and Water Assessment Tool (SWAT) model. Specifically, the model incorporated thirty-six reservoirs and analyzed twenty future climate projected scenarios from four Coupled Model Intercomparison Project Phase 6 (CMIP6) General Circulation Models (GCMs) for 2023–2100. These models include BCC-CSM2-MR (China), CanESM5 (Canada), MIROC6 (Japan), and MRI-ESM2-0 (Japan). Our findings indicate that (1) dam operation and diversion lead to a 0.5% decrease in streamflow during the dry season and a 4.1% increase during the rainy season compared to those in scenarios without dams; (2) there is a 37.4% decrease in annual sediment across the entire basin under same climate conditions; and (3) rainfall is projected to decrease (24.6% – 6.2%), resulting in a decrease in streamflow (0.2 – 32.2%) and sediment (39.3 – 56.0%) compared to historical records. Streamflow is expected to decrease during the rainy season (16.7 – 23.1%) and increase during the dry season (14.5 – 25.4%). Further potential degradation of the environmental conditions and water mismanagement are caused by the synergies between too much and too little rainfall conditions. The anticipated reductions in future streamflow and sediment could adversely affect ecological streamflow, water security, and sediment dynamics in the Sai Gon Dong Nai River basin. Our approach effectively identifies future changes in streamflow and sediment due to the combined effects of climate change and reservoir operations, providing valuable insights for integrated water resource management in tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  • Ahmed Z, Tran TND, Nguyen QB (2020) Applying semi distribution hydrological model SWAT to assess hydrological regime in Lai Giang catchment, Binh Dinh Province, Vietnam. Proceedings of the 2nd Conference on Sustainability in Civil Engineering (CSCE’20). Capital University of Science and Technology, Islamabad, Pakistan, p 8. https://csce.cust.edu.pk/archive/20-404.pdf

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development 1. JAWRA J Am Water Resour Association 34(1):73–89

    Article  CAS  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, Van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) Model use, calibration, and validation. Trans ASABE SWAT(4):1491–1508

    Article  Google Scholar 

  • Aryal A, Tran T, Kumar B, Lakshmi V (2023) Evaluation of Satellite-Derived Precipitation Products for Streamflow Simulation of a Mountainous Himalayan Watershed: A Study of Myagdi Khola in Kali Gandaki. Remote Sens (Basel) 15:47–62. https://doi.org/10.3390/rs15194762

    Article  Google Scholar 

  • Aryal A, Tran TND, Kim KY et al (2022) Climate and Land Use/Land Cover Change Impacts on Hydrological Processes in the Mountain Watershed of Gandaki River Basin, Nepal. AGU Fall Meeting Abstracts. pp H52L-0615

  • Assessment ME (2005) Ecosystems and human well-being: wetlands and water. World Resources Institute

    Google Scholar 

  • Babalola TE, Oguntunde PG, Ajayi AE, Akinluyi FO, Sutanudjaja EH (2021) Evaluating a finer resolution global hydrological model’s simulation of discharge in four West-African river basins. Model Earth Syst Environ 7(4):2167–2178. https://doi.org/10.1007/s40808-020-00948-x

    Article  Google Scholar 

  • Beaudoing H, Rodell M (2016) NASA/GSFC/HSL: GLDAS Noah Land Surface Model L4 3 hourly 0.25× 0.25 degree V2. 1, Greenbelt, Maryland, USA, Goddard Earth Sciences Data. and Information Services Center (GES DISC)

    Google Scholar 

  • Bhatta B, Shrestha S, Shrestha PK, Talchabhadel R (2019) Evaluation and application of a SWAT model to assess the climate change impact on the hydrology of the Himalayan River Basin. Catena 181(October 2018):104082. https://doi.org/10.1016/j.catena.2019.104082

    Article  Google Scholar 

  • Binh D, Van, Kantoush SA, Sumi T, Mai NP, Ngoc TA, Trung LV, An TD (2021) Effects of riverbed incision on the hydrology of the Vietnamese Mekong Delta. Hydrol Process 35(2):e14030

    Article  Google Scholar 

  • Camenen B, Gratiot N, Cohard J-A, Gard F, Tran VQ, Nguyen A-T, Dramais G, van Emmerik T, Némery J (2021) Monitoring discharge in a tidal river using water level observations: application to the Saigon River, Vietnam, vol 761. Science of The Total Environment, p 143195

    Google Scholar 

  • Chalise DR, Sankarasubramanian A, Ruhi A (2021) Dams and climate interact to alter river flow regimes across the United States. Earth’s Future 9(4):e2020EF001816

    Article  Google Scholar 

  • Chen C, Gan R, Feng D, Yang F, Zuo Q (2022) Quantifying the contribution of SWAT modeling and CMIP6 inputting to streamflow prediction uncertainty under climate change. J Clean Prod 364:132675

    Article  Google Scholar 

  • Dang ATN, Kumar L (2017) Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8. Vietnam Geomatics Nat Hazards Risk 8(2):1792–1811Ho Chi Minh city

    Article  Google Scholar 

  • De Girolamo AM, Barca E, Leone M, Porto A, Lo (2022) Impact of long-term climate change on flow regime in a Mediterranean basin. J Hydrology: Reg Stud 41:p101061

    Google Scholar 

  • Dethier EN, Renshaw CE, Magilligan FJ (2022) Rapid changes to global river suspended sediment flux by humans. Science 376(6600):1447–1452

    Article  CAS  Google Scholar 

  • Do SK, Nguyen BQ, Tran VN, Grodzka-Łukaszewska M, Sinicyn G, Lakshmi V (2024) Investigating the Future Flood and Drought shifts in the Transboundary Srepok River basin using CMIP6 projections. IEEE J Sel Top Appl Earth Obs Remote Sens 17:7516–7529. https://doi.org/10.1109/JSTARS.2024.3380514

    Article  Google Scholar 

  • Döll P, Schmied HM (2012) How is the impact of climate change on river flow regimes related to the impact on mean annual runoff? A global-scale analysis. Environ Res Lett 7(1):14037

    Article  Google Scholar 

  • Döll P, Zhang J (2010) Impact of climate change on freshwater ecosystems: a global-scale analysis of ecologically relevant river flow alterations. Hydrol Earth Syst Sci 14(5):783–799

    Article  Google Scholar 

  • Dong Z, Liu H, Hu H, Khan MYA, Wen J, Chen L, Tian F (2022) Future projection of seasonal drought characteristics using CMIP6 in the Lancang-Mekong River Basin. J Hydrol 610:127815

    Article  Google Scholar 

  • El Aoula R, Mhammdi N, Dezileau L, Mahe G, Kolker AS (2021) Fluvial sediment transport degradation after dam construction in North Africa. J Afr Earth Sc 182:104255

    Article  Google Scholar 

  • Gao P, Mu X-M, Wang F, Li R (2011) Changes in streamflow and sediment discharge and the response to human activities in the middle reaches of the Yellow River. Hydrol Earth Syst Sci 15(1):1–10

    Article  CAS  Google Scholar 

  • Giang NNH, Quang CNX, Long DT, Ky PD, Vu ND, Tran DD (2022) Statistical and hydrological evaluations of water dynamics in the lower Sai Gon-Dong Nai River, Vietnam. Water 14(1):130

    Article  Google Scholar 

  • Gitay H, Suárez A, Watson RT, Dokken DJ (2002) Climate change and biodiversity. Intergovernmental Panel on Climate Change, Geneva

  • Gupta HV, Kling H, Yilmaz KK, Martinez GF (2009) Decomposition of the mean squared error and NSE performance criteria: implications for improving hydrological modelling. J Hydrol 377(1–2):80–91. https://doi.org/10.1016/j.jhydrol.2009.08.003

    Article  Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81(1):23–69

    Article  Google Scholar 

  • Helton JC, Davis FJ, Johnson JD (2005) A comparison of uncertainty and sensitivity analysis results obtained with random and latin hypercube sampling. Reliab Eng Syst Saf 89(3):305–330

    Article  Google Scholar 

  • Hou AY, Kakar RK, Neeck S, Azarbarzin AA, Kummerow CD, Kojima M, Oki R, Nakamura K, Iguchi T (2014) The global precipitation measurement mission. Bull Am Meteorol Soc 95(5):701–722. https://doi.org/10.1175/BAMS-D-13-00164.1

    Article  Google Scholar 

  • Keitzer SC, Ludsin SA, Sowa SP, Annis G, Arnold JG, Daggupati P, Froehlich AM, Herbert ME, Johnson M-VV, Sasson AM (2016) Thinking outside of the lake: can controls on nutrient inputs into Lake Erie benefit stream conservation in its watershed? J Great Lakes Res 42(6):1322–1331

    Article  CAS  Google Scholar 

  • Khoi DN, Loi PT, Sam TT (2021) Impact of future land-use/cover change on streamflow and sediment load in the Be River Basin, Vietnam. Water 13(9):1244

    Article  Google Scholar 

  • Kouchi DH, Esmaili K, Faridhosseini A, Sanaeinejad SH, Khalili D, Abbaspour KC (2017) Sensitivity of calibrated parameters and water resource estimates on different objective functions and optimization algorithms. Water (Switzerland) 9(6):1–16. https://doi.org/10.3390/w9060384

    Article  Google Scholar 

  • Kummu M, Varis O (2007) Sediment-related impacts due to upstream reservoir trapping, the Lower Mekong River. Geomorphology 85(3–4):275–293

    Article  Google Scholar 

  • Le M-H, Zhang R, Nguyen BQ, Bolten JD, Lakshmi V (2023) Robustness of gridded precipitation products for Vietnam basins using the comprehensive assessment framework of rainfall. Atmos Res 293:106923. https://doi.org/10.1016/j.atmosres.2023.106923

    Article  Google Scholar 

  • Li M-H, Vu TM, Chen P-Y (2023) Multiple drought indices and their teleconnections with ENSO in various spatiotemporal scales over the Mekong River Basin. Sci Total Environ 854:158589

    Article  Google Scholar 

  • Luong VV, Bui DH (2021) The impact of the decline in area of the storage areas on water level at downstream of the Sai Gon-Dong Nai river system. Int J River Basin Manag 19(2):169–178

    Article  Google Scholar 

  • Lu XX, Chua SDX (2021) River discharge and water level changes in the Mekong River: droughts in an era of mega-dams. Hydrol Process 35(7):e14265

    Article  Google Scholar 

  • Lu XX, Siew RY (2006) Water discharge and sediment flux changes over the past decades in the Lower Mekong River: possible impacts of the Chinese dams. Hydrol Earth Syst Sci 10(2):181–195

    Article  CAS  Google Scholar 

  • Lyu Y, Yong B, Huang F, Qi W, Tian F, Wang G, Zhang J (2024) Investigating twelve mainstream global precipitation datasets: which one performs better on the Tibetan Plateau? J Hydrol 633:130947

    Article  Google Scholar 

  • Maurer EP, Hidalgo HG (2008) Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci 12(2):551–563

    Article  Google Scholar 

  • Mekonnen YA, Mengistu TD, Asitatikie AN, Kumilachew YW (2022) Evaluation of reservoir sedimentation using bathymetry survey: a case study on Adebra night storage reservoir, Ethiopia. Appl Water Sci 12(12):269

    Article  Google Scholar 

  • Mohammed IN, Bolten JD, Srinivasan R, Lakshmi V (2018) Improved hydrological decision support system for the Lower Mekong River Basin using satellite-based earth observations. Remote Sens 10(6):885

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans Asabe 50(3):885–900

    Article  Google Scholar 

  • Mulligan M, van Soesbergen A, Sáenz L (2020) GOODD, a global dataset of more than 38,000 georeferenced dams. Sci Data 7(1):31

    Article  Google Scholar 

  • Neill O B.C., Tebaldi C., Van Vuuren D.P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J.-F., Lowe J. (2016) The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci Model Dev 9(9):3461–3482

    Article  Google Scholar 

  • Ngo LA, Masih I, Jiang Y, Douven W (2018) Impact of reservoir operation and climate change on the hydrological regime of the Sesan and Srepok Rivers in the Lower Mekong Basin. Clim Change 149(1):107–119

    Article  Google Scholar 

  • Nguyen TV, Dietrich J, Dang TD, Tran DA, Van Doan B, Sarrazin FJ, Abbaspour K, Srinivasan R (2022) An interactive graphical interface tool for parameter calibration, sensitivity analysis, uncertainty analysis, and visualization for the Soil and Water Assessment Tool. Environ Model Software 156:105497

    Article  Google Scholar 

  • Nguyen BQ, Kantoush S, Binh, Tran, Thanh-Nhan-Duc, Van, Saber M, Vo DN, Sumi T (2023a) Response of Hydrological to Anthropogenic Activities in a Tropical Basin. In: Proceedings of the 40th IAHR World Congress. https://doi.org/10.3850/978-90-833476-1-5_iahr40wc-p1339-cd

  • Nguyen BQ, Kantoush S, Binh D, Van, Saber M, Vo DN, Sumi T (2023b) Quantifying the impacts of hydraulic infrastructure on tropical streamflows. Hydrol Process 37(3). https://doi.org/10.1002/hyp.14834

    Article  Google Scholar 

  • Nguyen BQ, Kantoush S, Binh D, Van Saber M, Vo DN, Sumi T (2023c) Understanding the anthropogenic development impacts on long-term flow regimes in a tropical river basin, Central Vietnam. Hydrol Sci J 68(2):341–354. https://doi.org/10.1080/02626667.2022.2153298

    Article  Google Scholar 

  • Nguyen, BQ, Kantoush SA, Van Binh D, Sumi T (2024) An assessment of uncontrolled human interventions on the contemporary sediment budget and morphological alterations of the Vu Gia Thu Bon River basin, central Vietnam. Heliyon

  • Peng S, Wang C, Li Z, Mihara K, Kuramochi K, Toma Y, Hatano R (2023) Climate change multi-model projections in CMIP6 scenarios in Central Hokkaido, Japan. Sci Rep 13(1):230

    Article  CAS  Google Scholar 

  • Pham H, Olivier PA (2019) Water balance changes in the upper part of Dong Nai river basin. J Viet Environ 11(2):74–82

    Article  Google Scholar 

  • Richter BD, Baumgartner JV, Braun DP, Powell J (1998) A spatial assessment of hydrologic alteration within a river network. Regulated Rivers: Res Management: Int J Devoted River Res Manage 14(4):329–340

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor UEA, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M (2004) The global land data assimilation system. Bull Am Meteorol Soc 85(3):381–394

    Article  Google Scholar 

  • Saedi J, Sharifi MR, Saremi A, Babazadeh H (2022) Assessing the impact of climate change and human activity on streamflow in a semiarid basin using precipitation and baseflow analysis. Sci Rep 12(1):9228

    Article  CAS  Google Scholar 

  • Schwarzer K, Thanh NC, Ricklefs K (2016) Sediment re-deposition in the mangrove environment of Can Gio, Saigon River estuary (Vietnam). J Coastal Res 75:138–142. https://doi.org/10.2112/SI75-028.1

    Article  Google Scholar 

  • Shafeeque M, Luo Y, Arshad A, Muhammad S, Ashraf M, Pham QB (2023) Assessment of climate change impacts on glacio-hydrological processes and their variations within critical zone. Nat Hazards 115(3):2721–2748

    Article  Google Scholar 

  • Tang G, Clark MP, Papalexiou SM, Ma Z, Hong Y (2020) Have satellite precipitation products improved over last two decades? A comprehensive comparison of GPM IMERG with nine satellite and reanalysis datasets. Remote sensing of environment 240:111697

    Article  Google Scholar 

  • Tapas MR, Do SK, Etheridge R, Lakshmi V (2024) Investigating the impacts of climate change on hydroclimatic extremes in the Tar-Pamlico River basin. North Carolina. J Environ Manage 363. https://doi.org/10.1016/j.jenvman.2024.121375

  • Tapas MR, Etheridge JR, Howard G et al (2022) Development of a Socio-Hydrological Model for a Coastal Watershed: Using Stakeholders’ Perceptions. AGU Fall Meeting Abstracts, vol 2022. pp H22O-0996

  • Tesfaye TW, Dhanya CT, Gosain AK (2020) Modeling the impact of climate change on the environmental flow indicators over Omo-Gibe basin, Ethiopia. Model Earth Syst Environ 6(4):2063–2089

    Article  Google Scholar 

  • Thrasher B, Wang W, Michaelis A, Melton F, Lee T, Nemani R (2022) NASA global daily downscaled projections, CMIP6. Sci data 9(1):262

    Article  Google Scholar 

  • Tran DD, Thong N, Van CT, Vinh DH, Au NH, Park E (2022a) Drastic variations in estuarine morphodynamics in Southern Vietnam: investigating riverbed sand mining impact through hydrodynamic modelling and field controls. J Hydrol 608:127572

    Article  Google Scholar 

  • Tran TND, Nguyen QB, Vo ND et al (2022b) Assessment of Terrain Scenario Impacts on Hydrological Simulation with SWAT Model. Application to Lai Giang Catchment, Vietnam. Springer Water. Springer Nature, pp 1205–1222. https://doi.org/10.1007/978-981-19-1600-7_77

    Chapter  Google Scholar 

  • Tran T-N-D, Lakshmi V (2022) The land use changes impacts on socio-economic drivers and simulation of surface and groundwater in the Eastern Shore of Virginia, the United States. AGU Fall Meeting Abstracts 2022:H42D-1270

  • Tran TND, Nguyen BQ, Grodzka-Łukaszewska M, Sinicyn G, Lakshmi V (2023a) The role of reservoirs under the impacts of climate change on the Srepok River Basin, Central Highlands Vietnam. Front Environ Sci 11:1304845. https://doi.org/10.3389/fenvs.2023.1304845

    Article  Google Scholar 

  • Tran TND, Nguyen QB, Zhang R, Aryal A, Łukaszewska M-G, Sinicyn G, Lakshmi V (2023b) Quantification of Gridded Precipitation products for the Streamflow Simulation on the Mekong River Basin using Rainfall Assessment Framework: a Case Study for the Srepok River Subbasin, Central Highland Vietnam. Remote Sens 15(4):1–27. https://doi.org/10.3390/rs15041030

    Article  Google Scholar 

  • Tran-Anh Q, Ngo-Duc T, Espagne E, Trinh-Tuan L (2023) A 10-km CMIP6 downscaled dataset of temperature and precipitation for historical and future Vietnam climate. Sci Data 10(1):257

    Article  Google Scholar 

  • Tran TND, Do SK, Nguyen BQ, Tran VN, Grodzka-Łukaszewska M, Sinicyn G, Lakshmi V (2024) Investigating the Future Flood and Drought shifts in the Transboundary Srepok River basin using CMIP6 projections. IEEE J Sel Top Appl Earth Obs Remote Sens

  • Truong NCQ, Nguyen HQ, Kondoh A (2018) Land use and land cover changes and their effect on the flow regime in the upstream Dong Nai River Basin, Vietnam. Water 10(9):1206

    Article  Google Scholar 

  • Try S, Tanaka S, Tanaka K, Sayama T, Lee G, Oeurng C (2020) Assessing the effects of climate change on flood inundation in the lower Mekong Basin using high-resolution AGCM outputs. Progress Earth Planet Sci 7:1–16

    Article  Google Scholar 

  • Van Binh D, Kantoush SA, Saber M, Mai NP, Maskey S, Phong DT, Sumi T (2020a) Long-term alterations of flow regimes of the Mekong River and adaptation strategies for the Vietnamese Mekong Delta. J Hydrology: Reg Stud 32:100742

    Google Scholar 

  • Van Binh D, Kantoush S, Sumi T (2020b) Changes to long-term discharge and sediment loads in the Vietnamese Mekong Delta caused by upstream dams. Geomorphology 353:107011

    Article  Google Scholar 

  • Wang T, Tu X, Singh VP, Chen X, Lin K (2021) Global data assessment and analysis of drought characteristics based on CMIP6. J Hydrol 596:126091

    Article  Google Scholar 

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Research: Atmos, 107(D20), p.ACL-6

    Google Scholar 

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216

    Article  Google Scholar 

  • Xu X, Yun X, Tang Q, Cui H, Wang J, Zhang L, Chen D (2023) Projected seasonal changes in future rainfall erosivity over the Lancang-Mekong River basin under the CMIP6 scenarios. J Hydrol 620:129444

    Article  Google Scholar 

  • Yang SL, Xu KH, Milliman JD, Yang HF, Wu CS (2015) Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes. Sci Rep 5(1):12581

    Article  CAS  Google Scholar 

  • Yang HF, Yang SL, Xu KH, Milliman JD, Wang H, Yang Z, Chen Z, Zhang CY (2018) Human impacts on sediment in the Yangtze River: a review and new perspectives, vol 162. Global and Planetary Change, pp 8–17

  • Yuan F, Wang B, Shi C, Cui W, Zhao C, Liu Y, Ren L, Zhang L, Zhu Y, Chen T, Jiang S, Yang X (2018) Evaluation of hydrological utility of IMERG final run V05 and TMPA 3B42V7 satellite precipitation products in the Yellow River source region, China. J Hydrol 567(May):696–711. https://doi.org/10.1016/j.jhydrol.2018.06.045

    Article  Google Scholar 

  • Zhao Y, Zou X, Gao J, Xu X, Wang C, Tang D, Wang T, Wu X (2015) Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: a case study of the Yangtze River, China. Sci Total Environ 536:803–812

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Vietnamese-German University funded this paper through the project: Assessment of dam impacts on flow, sediment, and morphology of the Sai Gon-Dong Nai River basin (Grant number DTCS2022-002). This paper is also partially funded by the Japan-ASEAN Science, Technology and Innovation Platform (JASTIP), Research Unit for Realization of Sustainable Society (RURSS) at Kyoto University, JSPS Core-to-Core Program (Grant Number: JPJSCCB20220004). Binh Quang Nguyen is supported by the JSPS Postdoctoral Fellowships Program (Fellowship ID: P24064).

Statements and declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

B.Q.N.: Conceptualization, Methodology, Software, Formal analysis, Investigation, Resources, Data curation, Writing – original draft, Writing – review & editing, Visualization. D.V.B.: Formal analysis, Investigation, Resources, Data curation, Writing – review & editing. T.N.D.T.: Formal analysis, Investigation, Resources, Data curation, Writing – review & editing, Visualization. S.A. K.: Conceptualization, Methodology, Investigation, Resources, Data curation, Supervision, Writing – review & editing. T.S.: Supervision, Writing – review & editing.

Corresponding authors

Correspondence to Binh Quang Nguyen or Doan Van Binh.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, B.Q., Van Binh, D., Tran, TND. et al. Response of streamflow and sediment variability to cascade dam development and climate change in the Sai Gon Dong Nai River basin. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07319-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07319-7

Keywords

Navigation