Skip to main content
Log in

Investigation of aerosol effects on diurnal cycle of precipitation amount, frequency and intensity over Central Africa

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Regional climate is affected by a wide variety of aerosols which modify through their radiative effects the precipitation distribution. In this article, the effects of aerosols, mainly dust aerosols on diurnal cycle of precipitation amount, frequency and intensity are investigated over central Africa by using the latest version of the Abdu Salam ICTP regional climate model coupled with the Community Land Model 4.5 as land surface scheme. Two sets of experiments have been conducted (one with aerosols interaction with dynamics and thermodynamics processes and another without this interaction) for a 10-year study period (2002–2011) and the Fourier transformation is used to study the 24-h cycle. In order to clearly understand spatial differences in RegCM experiments over central Africa, three subregions have been considered according to their land cover and climate characteristics. Our results indicate that the pattern of simulated aerosol optical depth (AOD) is well represented particularly northward of the study region compared to AOD from moderate resolution imaging spectroradiometer (MODIS) even if some differences in terms of magnitude are reported. The aerosols’ effects on diurnal cycle are generally not similar to those found in the amplitude and phase. The result pointed out that over the Sahelian region, atmospheric aerosol in general and dust in particular always induced a positive effect on diurnal cycle (increase the magnitude of the cycle) of precipitation intensities and in precipitation amount and precipitation frequency as well. But, the change is opposite in terms of amplitude and peak time over some subregions. It appears that the forcing of aerosols in solar radiation as well as in latent heat flux leads to the changes in the amplitude of the precipitation amount during the DJF and JAS seasons particularly during daytime. The changes in amplitude of the precipitation frequency are not consistent even if the corresponding phase always tends to increase by up to 5 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Availability of data and material

RegCM5 input data are obtained at http://clima-dods.ictp.it. Observation data can be downloaded in their respective website: ftp://disc2.nascom.nasa.gov/data/TRMM/, https://www.ncei.noaa.gov/data/precipitation-persiann/, and https://www.ncei.noaa.gov/data/precipitation-persiann/ for TRMM, PERSIANN and MODIS data, respectively.

Code availability

Codes used during the current study are available from the corresponding author upon reasonable request.

References

  • Adler RF, Huffman GJ, Bolvin DT, Curtis S, Nelkin EJ (2000) Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J Appl Meteorol 39:2007–2023

    Article  Google Scholar 

  • Amengual A, Homar S, Romero R, Brooks HE, Ramis C, Gordaliza M, Alonso S (2014) Projections of heat waves with high impact on human health in Europe. Glob Planet Change 119:71–84

    Article  Google Scholar 

  • Arakawa A, Schubert WH (1974) Interaction of a cumulus cloud ensemble with large-scale environment. J Atmos Sci 31:674–701

    Article  Google Scholar 

  • Bellouin N, Quaas J, Gryspeerdt E et al (2020) Bounding global aerosol radiative forcing of climate change. Rev Geophys. https://doi.org/10.1029/2019RG000660

    Article  Google Scholar 

  • Beniston M (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Change 119:71–95

    Article  Google Scholar 

  • Boucher O, Quaas J (2012) Water vapour affects both rain and aerosol optical depth. Nat Geosci. https://doi.org/10.1038/ngeo1692

    Article  Google Scholar 

  • Chen YC, Wang SH, Min Q, Lu S, Lin PL, Lin NH, Chung KS, Joseph E (2021) Aerosol impacts on warm-cloud microphysics and drizzle in a moderately polluted environment. Atmos Chem Phys 21:4487–4502

    Article  CAS  Google Scholar 

  • Choumbou PC, Komkoua Mbienda AJ, Guenang GM, Monkam D, Mkankam Kamga F (2021) Investigating the diurnal cycle of precipitation over central Africa. Meteorol Appl 28(4):e2014

    Article  Google Scholar 

  • Christensen MW, Neubauer D, Poulsen CA, Thomas GE, McGarragh GR, Povey AC, Proud SR, Grainger RG (2017) Unveiling aerosol-cloud interactions—part 1: cloud contamination in satellite products enhances the aerosol indirect forcing estimate. Atmos Chem Phys 17:13151–13164

    Article  CAS  Google Scholar 

  • Christensen MW, Jones WK, Stier P (2020) Aerosols enhance cloud lifetime and brightness along the stratus-to-cumulus transition. PNAS 117:17591–17598. https://doi.org/10.1073/pnas.1921231117

    Article  CAS  Google Scholar 

  • Dai A (2006) Precipitation characteristics in eighteen coupled climate models. J Clim 19:4605–4630

    Article  Google Scholar 

  • Dai A, Trenberth KE (2004) The diurnal cycle and its depiction in the Community Climate Model. J Clim 17:930–951

    Article  Google Scholar 

  • Dee DP (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137:553–597. https://doi.org/10.1002/qj.828

    Article  Google Scholar 

  • Dickinson RE, Henderson-Sellers A, Kennedy PJ (1993) Biosphere-atmosphere transfer scheme scheme (BATS) version 1e as coupled to the NCAR community climate model. Tech. rep., National Center for Atmospheric Research

  • Ekman AML, Rodhe H (2003) Regional temperature response due to the indirect sulphate aerosols forcing: impact of the model resolution. Clim Dyn 21:1–10

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48:2313–2335

    Article  Google Scholar 

  • Fan J, Zhang R, Li G, Tao WK (2007) Effects of aerosols and relative humidity on cumulus clouds. Res Atmos. https://doi.org/10.1029/2006JD008136

    Article  Google Scholar 

  • Filippo G, Coppola E, Giuliani G, Pichelli E, Nogherotto R, Raffaele F, Malguzzi P, Davolio S, Stocchi P, Drofa O (2023) The fifth generation regional climate modeling system, RegCM5: description and illustrative examples at parameterized convection and convection-permitting resolutions. JGR Atmos. https://doi.org/10.1029/2022JD038199

    Article  Google Scholar 

  • Giorgi F, Bi X, Qian Y (2002) Directive radiative forcing and regional climate effects of anthropogenic aerosols over east Asia: a regional coupled climate-chemistry/aerosol model study. J Geophys Res. https://doi.org/10.1029/2001JD001274

    Article  Google Scholar 

  • Giorgi F, Bi X, Qian Y (2003) Indirect vs. direct effects of anthropogenic sulfate on the climate of East Asia as simulated with a regional coupled climate-chemistry/aerosol model. Clim Change 58:345–376

    Article  CAS  Google Scholar 

  • Grell GA (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Gryspeerdt E, Stier P, Partridge DG (2014) Links between satellite-retrieved aerosol and precipitation. Atmos Chem Phys. https://doi.org/10.5194/acp-14-9677-2014

    Article  Google Scholar 

  • Guo J, Deng M, Lee SS, Wang F, Li Z, Zhai P, Liu H, Lv W, Yao W, Li X (2016) Delaying precipitation and lightning by air pollution over Pearl River Delta. Part I: observational analysis. J Geophys Res Atmos. https://doi.org/10.1002/2015JD023257

    Article  Google Scholar 

  • Guo J, Su T, Li Z, Miao Y, Li J, Liu H, Xu H, Cribb M, Zhai P (2017) Declining frequency of summertime local-scale precipitation over eastern china from 1970 to 2010 and its potential link to aerosols. Geophys Res Lett 44:5700–5708

    Article  Google Scholar 

  • Guo J, Liu H, Li Z, Rosenfeld D, Jiang M, Xu W, Jiang JH, He J, Chen D, Min M et al (2018) Aerosol-induced changes in the vertical structure of precipitation: a perspective of trmm precipitation radar. Atmos Chem Phys 18(18):13329–13343

    Article  CAS  Google Scholar 

  • Guo J, Su T, Chen D, Wang J, Li Z, Lv Y, Guo X, Liu H, Cribb M, Zhai P (2019) Declining summertime local-scale precipitation frequency over china and the united states, 1981–2012: the disparate roles of aerosols. Geophys Res Lett 46:13281–13289

    Article  Google Scholar 

  • Guo C, Chen D, Chen M, Zhang S, Guo J (2024) Aerosol impacts on summer precipitation forecast over the North China Plain by using Thompson aerosol-aware scheme in WRF: Statistical analysis and significant threat score improvements in polluted condition during June to August 2018. Atmos Res. https://doi.org/10.1016/j.atmosres.2023.107177

    Article  Google Scholar 

  • Holtslag A, De Bruijn E, Pan H (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118(8):1561–1575

    Article  Google Scholar 

  • Hou P, Wu S, McCarty JL, Gao Y (2018) Sensitivity of atmospheric aerosol scavenging to precipitation intensity and frequency in the context of global climate change. Atmos Chem Phys 18(11):8173–8182

    Article  CAS  Google Scholar 

  • Huang Y, Chameides WL, Dickinson RE (2007) Direct and indirect effects of anthropogenic aerosols on regional precipitation over east Asia. J Geophys Res 112:D03212. https://doi.org/10.1029/2006JD007114

    Article  CAS  Google Scholar 

  • Huffman GJ, Bolvin DT (2013) TRMM and other data precipitation data set documentation. Tech. rep., Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center and Science Systems and Applications, Inc. Greenbelt

  • Jones TA, Christopher SA, Quaas J (2009) A six year satellite-based assessment of the regional variations in aerosol indirect effects. Atmos Chem Phys 9:4091–4114

    Article  CAS  Google Scholar 

  • Kain A, Pokrovsky A, Pinsky M, Seifert A, Phillips V (2004) Simulation of effects of atmospheric aerosols on deep turbulent convective clouds using a spectral microphysics mixed-phase cumulus cloud model Part I: Model description and possible applications. J Atmos Sci. https://doi.org/10.1175/JAS-3350.1

    Article  Google Scholar 

  • Kain A, BenMoshe N, Pokrovsky A (2008) Factors determining the impact of aerosols on surface precipitation from clouds: an attempt at classification. J Atmos Sci. https://doi.org/10.1175/2007JAS2515.1

    Article  Google Scholar 

  • Kiehl J, Briegleb BP (1993) The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science 260:311–314

    Article  CAS  Google Scholar 

  • Kiehl J, Hack J, Bonan G, Boville B, Breigleb B, Williamson D, Rasch O (1996) Description of the NCAR Community Climate Model CCM3. Tech. rep., National Center for Atmospheric Research

  • Kim KM, Lau WK, Sud YC, Walker GK (2010) Influence of aerosol-radiative forcings on the diurnal and seasonal cycle of rainfall over West Africa and Eastern Atlantic ocean using GCM simulation. Clim Dyn. https://doi.org/10.1007/s00382010-0750-1

    Article  Google Scholar 

  • Klimont Z, Kupiainen K, Heyes C, Purohit P, Cofala J, Rafaj P, Borken-Kleefeld J, Schopp W (2017) Global anthropogenic emissions of particulate matter including black carbon. Atmos Chem Phys 17:8681–8723

    Article  CAS  Google Scholar 

  • Komkoua Mbienda AJ, Tchawoua C, Vondou DA, Choumbou PK, Sadem C, Dey S (2017) Sensitivity experiments of the RegCM4 simulations to different convective schemes over Central Africa. Int J Climatol 37:328–342. https://doi.org/10.1002/joc.4707

    Article  Google Scholar 

  • Komkoua Mbienda AJ, Tchawoua C, Vondou DA, Choumbou PK, Sadem C, Dey S (2017) Impact of anthropogenic aerosols on climate variability over Central Africa by using a regional climate model. Int J Climatol 37:249–267. https://doi.org/10.1002/joc.4701

    Article  Google Scholar 

  • Komkoua Mbienda AJ, Guenang GM, Tanessong RS, Tchakoutio Sandjon A (2019) Potential effects of aerosols on the diurnal cycle of precipitation over Central Africa by RegCM4.4. SN Appl Sci 1:141. https://doi.org/10.1007/s42452-018-0154-0

    Article  Google Scholar 

  • Koné B, Diedhiou A, NDatchoh ET, Bamba SM, Giorgi F, Anquetin S, Bamba A, Diawara A, Toka KA (2018) Sensitivity study of the regional climate model regcm4 to different convective schemes over West Africa. Earth Syst Dyn 9:1261–1278

  • Koren I, Remer LA, Longo K (2007) Reversal of trend of biomass burning in the Amazon. Geophys Res Lett. https://doi.org/10.1029/2007GL031530

    Article  Google Scholar 

  • Kothe S, Ahrens B (2010) On the radiation budget in regional climate simulations for West Africa. JGR Atmos. https://doi.org/10.1029/2010JD014331

    Article  Google Scholar 

  • Latha R, Murthy B, Vinayak B (2019) Aerosol-induced perturbation of surface fluxes over different landscapes in a tropical region. Int J Remote Sens 40(21):8203–8221

    Article  Google Scholar 

  • Lau KM, Kim KM, Sud YC, Walker GK (2009) A GCM study of the response of the atmospheric water cycle of West Africa and the Atlantic to Saharan dust radiative forcing. Geophys Ann 27:4023–4037

    Article  Google Scholar 

  • Lee SS, Guo J, Li Z (2016) Delaying precipitation by air pollution over the Pearl River Delta: 2. Model simulations. J Geophys Res Atmos. https://doi.org/10.1002/2015JD024362

    Article  Google Scholar 

  • Levy RC, Mattoo S, Munchak LA, Remer LA, Sayer AM, Patadia F, Hsu NC (2013) The Collection 6 MODIS aerosol products over land and ocean. Atmos Meas Tech 6(11):2989–3034

    Article  Google Scholar 

  • Li J, Yu R, Zhou T (2008) Seasonal variation of the diurnal cycle of rainfall in southern contiguous china. J Clim 21(22):6036–6043

    Article  Google Scholar 

  • Li Z, Niu F, Fan J, Liu Y, Rosenfeld D, Ding Y (2011) Long-term impacts of aerosols on the vertical development of clouds and precipitation. Nat Geosci 4(12):888–894

    Article  CAS  Google Scholar 

  • Li Z, Wang Y, Guo J, Zhao C, Gribb MC, Dong X et al (2019) East Asian study of tropospheric aerosols and their impact on regional clouds, precipitation and climate. J Geophys Res Atmos. https://doi.org/10.1029/2019JD030758

    Article  Google Scholar 

  • Liu S, Chen M, Zhuang Q (2014) Aerosol effects on global land surface energy fluxes during 2003–2010. Geophys Res Lett 41(22):7875–7881

    Article  Google Scholar 

  • Liu H, Guo J, Koren I, Altaratz O, Dagan G, Wang Y, Jiang JH, Zhai P, Yung YL (2019) Non-monotonic aerosol effect on precipitation in convective clouds over tropical oceans. Sci Rep. https://doi.org/10.1038/s41598-019-44284-2

    Article  Google Scholar 

  • Menon S, Del Genio AD, Kaufman Y, Bennartz R, Koch D, Loeb N, Orlikowski D (2002) Analyzing signatures of aerosol-cloud interactions from satellite retrievals and the GISS GCM to constrain the aerosol indirect effect. J Geophys Res Atmos 113:D14S22. https://doi.org/10.1029/2007JD009442

    Article  Google Scholar 

  • Munzimi YA, Hansen MC, Adusei B, Senay GB (2015) Characterizing Congo Basin rainfall and climate using tropical rainfall measuring mission (TRMM) satellite data and limited rain gauge ground observations. J Appl Meteorol Climatol 54:541–555

    Article  Google Scholar 

  • Myhre G, Stordal F, Johnsrud M, Kaufman YJ, Rosenfeld D, Storelvmo T, Kristjansson JE, Berntsen TK, Myhre A, Isaksen TSA (2007) Aerosol-cloud interaction inferred from MODIS satellite data and global aerosol models. Atmos Chem Phys 7:3081–3101

    Article  CAS  Google Scholar 

  • Nakajima T, Higurashi A, Kawamoto K, Penner JE (2001) A possible correlation between satellite-derived cloud and aerosol microphysical parameters. Geophys Res Lett 28:1171–1174

    Article  CAS  Google Scholar 

  • New M, Hulme M, Jones P (2000) Representing twentieth-century space-time climate variability: part II: development of 1901–1996 monthly grids of terrestrial surface climate. J Clim 13:2217–2238

    Article  Google Scholar 

  • Nguyen P, Shearer EJ, Tran H, Ombadi M, Hayatbini N, Palacios T, Huynh P, Updegraff G, Hsu K, Kuligowski B, Logan WS, Sorooshian S (2019) The CHRS Data Portal, an easily accessible public repository for PERSIANN global satellite precipitation data. Nature Scientific Data 6. https://doi.org/10.1038/sdata.2018.296

  • Nogherotto R, Tompkins AM, Giuliani G, Coppola E, Giorgi F (2016) Numerical framework and performance of the new multiple-phase cloud microphysics scheme in regcm4.5: precipitation, cloud microphysics, and cloud radiative effects. Geosci Model Dev. https://doi.org/10.5194/gmd-9-2533-2016

    Article  Google Scholar 

  • Oleson KW, Lawrence DM, Bonan GB, Drewniak B, Huang M, Koven CD, Levis S, Li F, Riley WJ, Subin ZM, Swenson SC, Thornton PE, Bozbiyik A, Fisher R, Heald CL, Kluzek E, Lamarque J-F, Lawrence PJ, Leung LR, Lipscomb WMS, Ricciuto DM, Sacks W, Sun Y, Tang J, Yang Z-L (2013) Technical description of version 4.5 of the Community Land Model (CLM). Tech. rep., National Center for Atmospheric Research, Boulde

  • Ou S, Liou K, Hsu N, Tsay S (2012) Satellite remote sensing of dust aerosol indirect effects on cloud formation over Eastern Asia. Int J Remote Sens 33:7257–7272

    Article  Google Scholar 

  • Papadimas C, Hatzianastassiou N, Matsoukas C, Kanakidou M, Mihalopoulos N, Vardavas I (2012) The direct effect of aerosols on solar radiation over the broader mediterranean basin. Atmos Chem Phys 12(15):7165–7185

    Article  CAS  Google Scholar 

  • Penner JE, Andreae M, Annegarn H, Barrie L, Feichter J, Hegg D, Jayaraman A, Leaitch R, Murphy D, Nganga J (2001) Aerosols, their direct and indirect effects. In: Climate change 2001: the scientific basis. Contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 289–348

  • Qian Y, Leung LR, Ghan SJ, Giorgi F (2003) Regional climate effects of aerosols over China: modeling and observations. Tellus 55B:914–934

    Article  Google Scholar 

  • Ramaswamy V, Boucher O, Haigh J, Hauglustaine D Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Climate change 2001: the scientific basis, contribution of working group I to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press, New York

  • Rosenfeld D, Lohmann U, Raga GB, O’Dowd CD, Kulmala M, Fuzzi S, Reissell A, Andreae MO (2008) Flood or Drought: How Do Aerosols Affect Precipitation? Science 321. https://doi.org/10.1126/science.1160606

  • Saley IA, Salack S, Sanda IS, Moussa MS, Bonkaney AL, Ly M, Fodé M (2019) The possible role of the Sahel greenbelt on the occurrence of climate extremes over the west African Sahel. Atmos Sci Lett 20(8):e927

    Article  Google Scholar 

  • Solmon F, Elguindi N, Mallet M (2012) Radiative and climate effects of dust over West Africa, as simulated by a regional climate model. Clim Res 52:97–113

    Article  Google Scholar 

  • Sorooshian S, Hsu KL, Gao X, Gupta HV, Imam B, Braithwaite D (2000) Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull Am Meteorol Soc 81:2035–2046

    Article  Google Scholar 

  • Tamoffo AT, Vondou DA, Pokam WM, Haensler A, Yepdo ZD, Fotso-Nguemo TC, Tchotchou LAD, Nouayou R (2019) Daily characteristics of central African rainfall in the remo model. Theoret Appl Climatol 137(3):2351–2368

    Article  Google Scholar 

  • Tanessong RS, Moudi PI, Vondou DA, Pokam MW, Taguemfo Kammalac J, Kaissassou S, Guenang GM, Komkoua Mbienda AJ, Yepdo Djomou Z (2019) Evaluation of the Tropical Rainfall Measuring Mission (TRMM) 3B42 and 3B43 products relative to synoptic weather station observations over Cameroon. Earth Space Sci Open Arch. https://doi.org/10.1002/essoar.10505477.1

    Article  Google Scholar 

  • Wang Q, Lil Z, Guo J, Zhao C, Cribb M (2018) The climate impact of aerosols on the lightning flash rate: is it detectable from long-term measurements? Atmos Chem Phys. https://doi.org/10.5194/acp-18-12797-2018

    Article  Google Scholar 

  • Yu R, Xu Y, Zhou T, Li J (2007) Relation between rainfall duration and diurnal variation in the warm season precipitation over central Eastern China. Geophys Res Lett 34(13)

  • Zanis P (2009) Study of the direct effect of anthropogenic aerosols on near surface temperature over southeastern Europe during 2000 based on regional climate modeling. Ann Geophys 27:3977–3988

    Article  Google Scholar 

  • Zhao C, Tie X, Lin Y (2006) A possible positive feedback of reduction of precipitation and increase in aerosols over eastern central China. Geophys Res Lett. https://doi.org/10.1029/2006GL025959

    Article  Google Scholar 

  • Zhao C, Liu X, Ruby Leung L, Hagos S (2011) Radiative impact of mineral dust on monsoon precipitation variability over West Africa. Atmos Chem Phys 11:1879–1893

    Article  CAS  Google Scholar 

  • Zhao A, Bollasina MA, Stevenson DS (2019) Strong influence of aerosol reductions on future heatwaves. Geophys Res Lett 46:4913–4923

    Article  Google Scholar 

  • Zheng Z, Zhao C, Lolli S, Wang X, Wang Y, Ma X, Li Q (2020) Diurnal variation of summer precipitation modulated by air pollution: observational evidences in the Beijing Metropolitan Area. Environ Res Lett. https://doi.org/10.1088/1748-9326/ab99fc

    Article  Google Scholar 

  • Zhou T, Yu R, Chen H, Dai A, Pan Y (2008) Summer precipitation frequency, intensity, and diurnal cycle over china: a comparison of satellite data with rain gauge observations. J Clim 21(16):3997–4010

    Article  Google Scholar 

  • Zuo J, Pullen S, Palmer J, Bennetts H, Chileshe N, Ma T (2015) Impacts of heat waves and corresponding measures: a review. J Clean Prod 92:1–12

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their sincere thanks to the International Center for Theoretical Physics (ICTP), Italy, for providing the RegCM model. The second author is grateful to ICTP for the Associate program and thanks Mr Graziano Giuliani for constructive discussion on ICTP cluster where simulations have been done. We thank the anonymous referees for their help in evaluating this paper.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Komkoua Mbienda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matho Lontio, S.L., Komkoua Mbienda, A.J., Guenang, G.M. et al. Investigation of aerosol effects on diurnal cycle of precipitation amount, frequency and intensity over Central Africa. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07303-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07303-1

Keywords

Navigation