Skip to main content
Log in

A stepwise-clustered copula downscaling approach for ensemble analyses of discrete and interactive features in precipitation-extreme variations: a case study for eastern China

  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

Extreme precipitation events are frequent under global warming, leading to severe social, economic, and environmental damages. Therefore, a coupled stepwise clustered copula downscaling (SCCD) method is developed to explore the spatial and temporal variability of extreme precipitation in Eastern China under two shared socioeconomic pathways (SSPs). The performance of SCCD in reproducing historical climatology is assessed by comparing its simulated values with the observed data. The result demonstrates that SCCD performs well in modeling climate variables. In addition, the seasonal variations, probability distributions, and absolute changes of nine extreme precipitation indices in the future periods (i.e., 2024—2060 and 2061—2100) are compared with their performance in the historical period (i.e., 1981—2020). The results show that the precipitation in Eastern China shows an increasing trend over time. For example, compared to the historical period, the mean annual precipitation increases by 9.4% and 13.6% for the periods 20424–2060 and 2060–2100 under SSP585, respectively. The spatial variability and age trends suggest that future precipitation extremes also show significant regional differences. By the end of the twenty-first century, both frequencies and intensities of extreme precipitation at high latitudes have changed significantly. Under both SSP scenarios, all nine indices (except Consecutive Dry Days) increase by more than 10% in the future period at the high latitudes, especially for Very heavy precipitation days (R20), where the increase is more than 50% in most areas. In addition, the impacts of different emission scenarios on precipitation in autumn and winter are significantly greater than those in spring and summer. The results can provide a scientific basis for decision-makers to develop mitigation and adaptation policies to minimize the risks caused by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The observations are available from the China Meteorological Data Service Center (CMDC) website (http://data.cma.cn). The GCM outputs are obtained from Earth System Grid Federation (ESGF) (https://esgf-node.llnl. gov). The ERA5 reanalysis dataset is extracted from the ECMWF MARS ERA5 types (https://cds.climate.copernicus.eu). All data generated or analyzed during this study are included in this published article.

References

  • Abbas A, Bhatti AS, Ullah S, Ullah W, Waseem M, Cy X, Dou X, Ali G (2023) Projection of precipitation extremes over South Asia from CMIP6 GCMs. J Arid Land 15(3):274–296

    Article  Google Scholar 

  • Alidoost F, Stein A, Su Z (2019) The use of bivariate copulas for bias correction of reanalysis air temperature data. PLoS One 14(5):e0216059

    Article  Google Scholar 

  • Batibeniz F, Ashfaq M, Diffenbaugh NS, Key K, Evans KJ, Turuncoglu UU, Nol B (2020) Doubling of U.S. population exposure to climate extremes by 2050. Earth’s Future 8(4). https://doi.org/10.1029/2019EF001421

  • Chen CA, Hsu HH, Liang HC (2021) Evaluation and comparison of CMIP6 and CMIP5 model performance in simulating the seasonal extreme precipitation in the western North Pacific and east Asia. Weather Clim Extreme 31:100303. https://doi.org/10.1016/j.wace.2021.100303

    Article  Google Scholar 

  • Chen CA, Hsu HH, Hong CC, Chiu PG, Tu CY, Lin SJ, Kitoh A (2019) Seasonal precipitation change in the western North Pacific and East Asia under global warming in two high-resolution AGCMs. Clim Dynam 53(9–10):5583–5605

    Article  Google Scholar 

  • Chen X, Zhou T, Wu P (2020a) Emergent constraints on future projections of the western North Pacific subtropical high. Nat Commun 11:2802. https://doi.org/10.1038/s41467-020-16631-9

    Article  CAS  Google Scholar 

  • Chen YD, Li J, Zhang Q (2016) Changes in site-scale temperature extremes over China during 2071–2100 in CMIP5 simulations. J Geophys Res Atmos 121:2732–2749

    Article  Google Scholar 

  • Chen Z, Zhou T, Zhang L, Chen X, Zhang W, Jiang J (2020b) Global land monsoon precipitation changes in CMIP6 projections. Geophys Res Lett 47(14). https://doi.org/10.1029/2019GL086902

  • Cho MH, Boo KO, Martin GM, Lee J, Lim GH (2015) The impact of land cover generated by a dynamic vegetation model on climate over East Asia in present and possible future climate. Earth Syst Dynam 6:147–160

    Article  Google Scholar 

  • Du L, Mikle N, Zou Z, Huang Y, Shi Z, Jiang L (2018) Global patterns of extreme drought-induced loss in land primary production: identifying ecological extremes from rain-use efficiency. Sci Total Environ 628–629:611–620

    Article  Google Scholar 

  • Duan RX, Huang GH, Zhou X, Li YP, Tian CY (2021) Ensemble drought exposure projection for multifactorial interactive effects of climate change and population dynamics: application to the Pearl River Basin. Earth’s Fut 9:e2021EF002215

    Article  Google Scholar 

  • Donat MG, Lowry AL, Alexander LV, O’Gorman PA, Maher N (2016) More extreme precipitation in the world’s dry and wet regions. Nat Clim Change 6:508–513

    Article  Google Scholar 

  • Fan YR, Huang G, Baetz BW, Li YP, Huang K (2017) Development of Copula-based Particle Filter (CopPF) approach for hydrologic data assimilation under consideration of parameter interdependence. Water Resour Res. https://doi.org/10.1002/2016WR020144

    Article  Google Scholar 

  • Fan YR, Huang GH, Li YP, Wang XQ, Li Z (2016) Probabilistic prediction for monthly streamflow through coupling stepwise cluster analysis and quantile regression methods. Water Resour Manag 30(14):5313–5331

    Article  Google Scholar 

  • Fan YR, Huang W, Huang GH, Li Z, Li YP, Wang XQ, Cheng GH, Jin L (2015a) A stepwise-cluster forecasting approach for monthly streamflows based on climate teleconnections. Stoch Env Res Risk A 29(6):1557–1569

    Article  Google Scholar 

  • Fan YR, Huang WW, Huang GH, Huang K, Li YP, Kong XM (2015b) Bivariate hydrologic risk analysis based on a coupled entropy-copula method for the Xiangxi River in the Three Gorges reservoir area, China. Theor Appl Climatol 125(1–2):381–397

    Google Scholar 

  • Guo J, Huang G, Wang X, Li Y, Yang L (2018) Future changes in precipitation extremes over China projected by a regional climate model ensemble. Atmos Environ 188:142–156

    Article  CAS  Google Scholar 

  • Gringorten II (1963) A plotting rule for extreme probability paper. J Geophys Res 68(3):813–814

    Article  Google Scholar 

  • Ha KJ, Moon S, Timmermann A, Kim D (2020) Future changes of summer monsoon characteristics and evaporative demand over Asia in CMIP6 simulations. Geophys Res Lett 47(8):e2020GL087492

  • Han JC, Huang YF, Li Z, Zhao CH, Cheng GH, Huang PF (2016) Groundwater level prediction using a SOM-aided stepwise cluster inference model. J Environ Manag 182:308–321

    Article  Google Scholar 

  • Hanf FS, Annamalai H, Rinke A, Dethloff K (2017) South Asian summer monsoon breaks: process-based diagnostics in HIRHAM5. J Geophys Res: Atmos 122(9):4880–4902

    Article  Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horanyi A, Munoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati G, Bidlot J, Bonavita M, Chiara G, Dahigren P, Dee D, Diamantakis M, Dragani R, Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogsn RJ, Holm E, Janiskova M, Keeley S, Laloyaux P, Lupu C, Radnoti G, Rosnay P, Rozum I, Vamborg F, Villaume S, Thepaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

    Article  Google Scholar 

  • Hu XM, Xue M, Mcpherson RA, Martin E, Rosendahl DH, Qiao L (2018) Precipitation dynamical downscaling over the great plains. J Adv Model Earth Syst 10(2):421–447. https://doi.org/10.1002/2017MS001154

    Article  Google Scholar 

  • Huang GH (1992) A stepwise cluster-analysis method for predicting air-quality in an urban environment. Atmos Environ 26(3):349–357

    Article  Google Scholar 

  • Huang GH, Huang YF, Wang GQ, Xiao HN (2006) Development of a forecasting system for supporting remediation design and process control based on NAPL-biodegradation simulation and stepwise-cluster analysis. Water Resour Res 42:650–664

    Article  Google Scholar 

  • Huang XY, Li XH (2022) Future projection of rainstorm and flood disaster risk in southwest China based on CMIP6 models. J Appl Meteorol Sci 33(2):231–243

    Google Scholar 

  • Hurtt GC, Chini LP, Sahajpal R, Frolking SE, Bodirsky B, Calvin KV, Doelman JC, Fisk J, Fujimori S, Goldewijk K (2020) Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci Model Dev 13(11):5425–5464

    Article  CAS  Google Scholar 

  • IPCC (2023) Climate change 2023: synthesis report, summary for policy-makers. In: Core Writing Team, Lee H, Romero J (eds) Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. Technical Report. IPCC, Geneva. https://doi.org/10.59327/IPCC/AR6-9789291691647.001

  • Jacob D, Kotova L, Teichmann C, Sobolowski SP, Vautard R, Donnelly C et al (2018) Climate impacts in Europe under +1.5°C global warming. Earth’s Fut 6:264–285

    Article  Google Scholar 

  • Ji D, Dong W, Hong T, Dai T, Zheng Z, Yang S, Zhu X (2018) Assessing parameter importance of the weather research and forecasting model based on global sensitivity analysis methods. J Geophys Res Atmos 123:4443–4460

    Article  Google Scholar 

  • Karl TR, Nicholls N, Ghazi A (1999) Clivar/GCOS/WMO workshop on indices and indicators for climate extremes workshop summary. In weather and climate extremes 42:3–7. https://doi.org/10.1023/a:1005491526870

  • Karmakar S, Simonovic S (2009) Bivariate flood frequency analysis. Part 2: a copula-based approach with mixed marginal distributions. J Flood Risk Manag 2:32–44

    Article  Google Scholar 

  • Kong XM, Huang GH, Fan YR, Li YP (2015) Maximum entropy-gumbel-hougaard copula method for simulation of monthly streamflow in Xiangxi River, China. Stoch Env Res Risk Assess 29:833–846

    Article  Google Scholar 

  • Li X, Li Z (2023) Evaluation of bias correction techniques for generating high-resolution daily temperature projections from CMIP6 models. Clim Dyn. https://doi.org/10.1007/s00382-023-06778-8

    Article  Google Scholar 

  • Li X, Li Z (2022) Global water availability and its distribution under the coupled model intercomparison project phase six scenarios. Int J Climatol 42(11):5748–5767. https://doi.org/10.1002/joc.7559

    Article  Google Scholar 

  • Li X, Li Z, Huang W, Zhou P (2020) Performance of statistical and machine learning ensembles for daily temperature downscaling. Theoret Appl Climatol 140(1–2):571–588. https://doi.org/10.1007/s00704-020-03098-3

    Article  Google Scholar 

  • Li XL, Wang WG, Zhang SL (2022) A trend analysis of future precipitation in the Yangtze River basin based on CMIP6 multi-mode. China Rural Water Hydropower 3(1–17):12

    Google Scholar 

  • Li YF, Li YP, Huang GH, Chen X (2010) Energy and environmental systems planning under uncertainty-An inexact fuzzy-stochastic programming approach. Appl Energy. https://doi.org/10.1016/j.apenergy.2010.02.030

    Article  Google Scholar 

  • Li YP, Huang GH, Cui L, Liu J (2019) Mathematical modeling for identifying cost-effective policy of municipal solid waste management under uncertainty. J Environ Informatics. https://doi.org/10.3808/jei.201900417

    Article  Google Scholar 

  • Li Z, Huang GH, Han JC, Wang XQ, Fan YR, Cheng GH, Zhang H, Huang W (2015) Development of a stepwise-clustered hydrological inference model. J Hydrol Eng 20(10):04015008

    Article  Google Scholar 

  • Lorenz M, Bliefernicht J, Haese B, Kunstman H (2018) Copula-based downscaling of daily precipitation fields. Hydrol Process 32(23):3479–3494

    Article  Google Scholar 

  • Maity R, Suman M, Laux P, Kunstmann H (2019) Bias correction of zero-inflated RCM precipitation fields: a copula-based scheme for both mean and extreme conditions. J Hydrometeorol 4:595–611. https://doi.org/10.1175/JHM-D-18-0126.1

    Article  Google Scholar 

  • Mao G, Vogl S, Laux P, Wagner S, Kunstmann H (2015) Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data. Hydrol Earth Syst Sci 19(4):1787–1806. https://doi.org/10.5194/hess-19-1787-2015

    Article  Google Scholar 

  • Massey FJ (1951) The Kolmogorov-Smirnov test for goodness of fit. J Am Stat Assoc 46(253):68–78

    Article  Google Scholar 

  • Meng Y, Hao ZC, Feng SF, Zhang X, Hao FH (2022) Increase in compound dry-warm and wet-warm events under global warming in CMIP6 models. Glob Planet Change 210:103773

    Article  Google Scholar 

  • Miao C, Sun Q, Duan Q, Wang Y (2016) Joint analysis of changes in temperature and precipitation on the Loess Plateau during the period 1961–2011. Clim Dyn 47(9):3221–3234

    Article  Google Scholar 

  • Min SK, Zhang X, Zwiers FW, Hegerl GC (2011) Human contribution to more-intense precipitation extremes. Nature 470:378–381

    Article  CAS  Google Scholar 

  • Mukherjee S, Ashfaq M, Mishra AK (2020) Compound drought and heatwave at a global scale: the role of natural climate variability-associated synoptic patterns and land-surface energy budget anomalies. J Geophys Res Atmos 125(11):e2019JD031943

    Article  Google Scholar 

  • Nelsen RB (2007) An introduction to copulas. Springer Science & Business Media, Berlin

    Google Scholar 

  • Ongoma V, Chen HS, Gao CJ, Nyongesa AM, Polong F (2018) Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat Hazards 90(2):901–920

    Article  Google Scholar 

  • Popp A, Calvin K, Fujimori S, Havlik P, Vuuren DPV (2017) Land-use futures in the shared socio-economic pathways. Glob Environ Chang 42:331–345

    Article  Google Scholar 

  • Qin XS, Huang GH, Chakma A (2007) A stepwise-inference-base optimization system for supporting remediation of petroleum-contaminated sites. Water Air Soil Pollut 185:349–368

    Article  CAS  Google Scholar 

  • Qin YY (2014) Projection of temperature in Guangdong province based on copula-based ensemble downscaling method. Dissertation, North China Electric Power University. https://doi.org/10.7666/d.Y2658829

  • Rahmstorf S, Foster G, Cahill N (2017) Global temperature evolution: recent trends and some pitfalls. Environ Res Lett 12(5). https://doi.org/10.1088/1748-9326/aa6825

  • Ren JY, Huang GH, Li YP, Zhou X, Lu C, Duan RX (2021) Stepwise clustered heatwave downscaling and projection for Guangdong Province. Int J Climatol 42(5):2835–2860

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de repartition a on dimensions et leurs marges. Publications de I’Institut de statistique de I’Universite de Paris 8. https://api.semanticscholar.org/CorpusID:127105744

  • Spinoni J, Barbosa P, Bucchignani E, Cassano J, Cavazos T, Christensen JH, Christensen OB, Coppola E, Evans J, Geyer B, Giorgi F, Hadjinicolaou P, Jacob D, Katzfey J, Koenigk T, Laprise R, Lennard CJ, Kurnaz ML, Li D, Llopart M, McCormick N, Naumann G, Nikulin G, Ozturk T, Panitz HJ, Porfirio da Rocha R, Rockel B, Solman SA, Syktus J, Tangang F, Teichmann C, Vautard R, Vogt JV, Winger K, Zittis G, Dosio A (2019) Future global meteorological drought hotspots: a study based on CORDEX data. J Clim. https://doi.org/10.1175/jcli-d-19-0084.1

    Article  Google Scholar 

  • Sun CX, Huang GH, Fan YR, Zhou X, Lu C, Wang XQ (2020) Vine copula ensemble downscaling for precipitation projection over the loess plateau based on high-resolution multi-RCM outputs. Water Resour Res 57(1)

  • Sun W, Huang GH, Zeng GM, Qin XS, Sun XL (2009) A stepwise-cluster microbial biomass inference model in food waste composting. Waste Manag 29(12):2956–2968

    Article  CAS  Google Scholar 

  • Ullah W, Wang GJ, Lou D, Ullah S, Ali G (2021) Large-scale atmospheric circulation patterns associated with extreme monsoon precipitation in Pakistan during 1981–2018. Atmos Res 253:105489

    Article  Google Scholar 

  • Vogel MM, Hauser M, Seneviratne SI (2020) Projected changes in hot, dry and wet extreme events’ clusters in CMIP6 multi-model ensemble. Environ Res Lett 15(9):094021

    Article  Google Scholar 

  • Wang S, Huang GH, He L (2012) Development of a clusterwise-linear-regression-based forecasting system for characterizing DNAPL dissolution behaviors in porous media. Sci Total Environ 433:141–150

    Article  CAS  Google Scholar 

  • Wang S, Wang Y (2019) Improving probabilistic hydroclimatic projections through high-resolution convection-permitting climate modeling and Markov chain Monte Carlo simulations. Clim Dyn 53:1613–1636

    Article  Google Scholar 

  • Wang XQ, Huang GH, Lin QG, Nie XH, Cheng GH, Fan YR, Li Z, Yao Y, Suo MQ (2013) A stepwise cluster analysis approach for downscaled climate projection - a Canadian case study. Environ Model Softw 49:141–151

    Article  Google Scholar 

  • Wang XQ, Huang GH, Zhao S, Guo JH (2015) An open-source software package for multivariate modeling and clustering: applications to air quality management. Environ Sci Pollut Res 22(18):14220–14233

    Article  CAS  Google Scholar 

  • Wei Q, Liu J (2018) A non-stationary cost-benefit based bivariate extreme flood estimation approach. J Hydrol 557:589–599. https://doi.org/10.1016/j.jhydrol.2017.12.045

    Article  Google Scholar 

  • Westra S, Fowler HJ, Evans JP, Alexander LV, Berg P, Johnson F, Kendon EJ, Lenderink G, Roberts N (2014) Future changes to the intensity and frequency of short-duration extreme rainfall. Rev Geophys 52:522–555

    Article  Google Scholar 

  • Wilks SS (1962) Mathematical statistics. Wiley, New York

    Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Res 30:79–82

    Article  Google Scholar 

  • Xie S, Klein SA, Yio JJ, Beljaars AC, Long CN, Zhang M (2006) An assessment of ECMWF analyses and model forecasts over the north slope of Alaska using observations from the arm mixed-phase Arctic cloud experiment. J Geophys Res: Atmos 111(5)

  • Yu F, Chen Z, Ren X, Yang G (2009) Analysis of historical floods on the Yangtze River, China: characteristics and explanations. Geomorphology 113:210–216

    Article  Google Scholar 

  • Zhang L, Singh V (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11:150–164

    Article  Google Scholar 

  • Zhang Q, Gemmer M, Chen J (2008) Climate changes and flood/drought risk in the Yangtze Delta, China, during the past millennium. Quat Int 176:62–69

    Article  Google Scholar 

  • Zhang Q, Sun P, Singh VP, Chen X (2012) Change P (2012) Spatial-temporal precipitation changes (1956–2000) and their implications for agriculture in China. Glob Planet Change 82:86–95

    Article  Google Scholar 

  • Zhang SH, Li WD, An WJ, Hou J, Hou XN, Tang CB (2023) Temporal and spatial evolutionary trends of regional extreme precipitation under different emission scenarios: case study of the Jialing River Basin, China. J Hydrol. https://doi.org/10.1016/j.jhydrol.2023.129156

  • Zhang XB, Alexander L, Hegerl GC et al (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev: Clim Change 2(6):851–870

    Google Scholar 

  • Zhao MX, Su BD, Jiang T, Wang AQ, Tao H (2021) Simulation and projection of precipitation in the upper Yellow River Basin by CMIP6 multi-model ensemble. Plateau Meteorol 40(3):547–558. https://doi.org/10.7522/j.issn.1000-0534.2020.00066

    Article  Google Scholar 

  • Zhou X, Huang GH, Fan YR, Wang XQ, Li YP (2022) A mixed-level factorial inference approach for ensemble long-term hydrological projections over the Jing River Basin. J Hydrometeorol 23(11):1807–1830

    Article  Google Scholar 

  • Zhou X, Huang G, Wang X, Fan Y, Cheng G (2018) A coupled dynamical-copula downscaling approach for temperature projections over the Canadian Prairies. Clim Dyn 51:2413–2431. https://doi.org/10.1007/s00382-017-4020-3

    Article  Google Scholar 

  • Zhu H, Jiang Z, Li J, Li W, Sun C, Li L (2020) Does CMIP6 inspire more confidence in simulating climate extremes over China? Adv Atmos Sci 37:1119–1132

    Article  Google Scholar 

  • Zhuang XW, Li YP, Huang GH, Wang XQ (2016) A hybrid factorial stepwise-cluster analysis method for streamflow simulation-a case study in northwestern China. Hydrol Sci J 61(15):2775–2788

    Article  Google Scholar 

  • Zhuang XW, Li YP, Huang GH, Wang CX (2017) Evaluating climate change impacts on the hydrology of watershed in northwestern China using a stepwise-clustered downscaling approach. Int J Climatol 37(6):2961–2976

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation (U2040212, 52221003, 52279002, 52279003) and the Natural Science and Engineering Research Council of Canada. We are also very grateful for the helpful inputs from the Editor and anonymous reviewers.

Funding

This research was supported by the Natural Science Foundation (U2040212, 52221003, 52279002, 52279003) and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

Yu BZ did all the calculations and analysis and wrote and edited the manuscript. Huang GH designed and directed the project. Zhou X participated in reviewing and editing the manuscript. Wang SG and Li YP provided some advice for the project. Ren JY and Kuang WS provided the instruction in SCA and copula.

Corresponding author

Correspondence to Guohe Huang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 192 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Huang, G., Zhou, X. et al. A stepwise-clustered copula downscaling approach for ensemble analyses of discrete and interactive features in precipitation-extreme variations: a case study for eastern China. Clim Dyn (2024). https://doi.org/10.1007/s00382-024-07260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00382-024-07260-9

Keywords

Navigation