Skip to main content
Log in

Exploring warm extremes in South America: insights into regional climate change projections through dry-bulb and wet-bulb temperatures

  • Original Article
  • Published:
Climate Dynamics Aims and scope Submit manuscript

Abstract

This study addresses a regional research gap by analyzing summertime wet-bulb temperature (Tw) projections in South America (SA) and their implications for heatwaves in central-east Argentina (CEA). Tw emerges as a relevant variable to address the potential impact of humid and warm extremes under future climate conditions, while allowing comparison with more classical analyses based on dry-bulb temperature indices. The analyses presented in this work are based on outputs from Regional Climate Models provided by CORDEX (COordinated Regional climate Downscaling EXperiment) South America database. Tw increases in all SA stem from rising temperature and specific humidity at lower atmospheric layers. Projected Tw rise surpasses the expected maximum dry-bulb temperature (Tmax) increase across most of SA, exhibiting pronounced disparities in subtropical areas and intensifying further in CEA towards the century’s end. Projected trends in Tw and minimum dry-bulb temperature (Tmin) show similarities across SA, except for a limited area within CEA where relatively larger Tw increases are expected. The frequency and intensity of heat extremes are also anticipated to increase in the coming years in SA. Noteworthy findings encompass projected increases in hot days, hot nights, and wet days, with the tropical region standing out for its pronounced projections. Remarkably, the number of wet days would rise significantly, followed by less prominent increases in the number of hot nights and days. Moreover, heightened persistence is expected for wet days compared to hot days and nights. A bivariate statistical analysis of heatwave projections in CEA reveals a transition towards warmer and more humid spells. This underscores the critical need to integrate air humidity conditions for accurate assessments of future health risks. Despite inherent uncertainties in climate change projections, consensus emerges on the direction of the expected changes, as well as on the urgency of limiting greenhouse gas emissions to mitigate the imminent threat of humid heatwaves in CEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

CORDEX data was downloaded from the official website (https://cordex.org/data-access/). ERA5 data was retrieved from the Copernicus Climate Change Service website (https://cds.climate.copernicus.eu/).

References

  • Ahrens C (2009) Meteorology Today: An Introduction to Weather, Climate, and the Environment. Brooks/Cole, United States of America, 9th edition

  • Alvarez MS, Cerne B, Osman M, y, Vera CS (2019) Intraseasonal and low frequency processes contributing to the December 2013 heat wave in Southern South America. Climate Dynamics, 53(7):4977–4988. https://doi.org/10.1007/s00382-019-04838-6

  • Åström C, Orru H, Rocklöv J, Strandberg G, Ebi KL, y, Forsberg B (2013) Heat related respiratory hospital admissions in Europe in a changing climate: a health impact assessment. BMJ Open, 3(1):e001842. https://doi.org/10.1136/bmjopen-2012-001842

  • Barriopedro D, García-Herrera R, Ordóñez C, Miralles DG, Salcedo-Sanz S (2023) Heat waves: physical understanding and scientific challenges. Rev Geophys 61:e2022RG000780. https://doi.org/10.1029/2022RG000780

    Article  Google Scholar 

  • Bekris Y, Loikith PC, Neelin JD (2023) Short warm distribution tails accelerate the increase of humid-heat extremes under global warming. Geophys Res Lett 50:e2022GL102164. https://doi.org/10.1029/2022GL102164

    Article  Google Scholar 

  • Bentsen M, Bethke I, Debernard JB, Iversen T, Kirkevåg A, Seland, Drange H, Roelandt C, Seierstad IA, Hoose C, Kristjánsson JE (2013) The Norwegian earth system model, NorESM1-N – part 1: description and basic evaluation of the physical climate. Geosci Model Dev 6(3):687–720. https://doi.org/10.5194/gmd-6-687-2013

    Article  Google Scholar 

  • Blázquez J, Nuñez MN (2013) Analysis of uncertainties in future climate projections for South America: comparison of WCRP-CMIP3 and WCRP-CMIP5 models. Clim Dyn 41(3–4):1039–1056. https://doi.org/10.1007/s00382-012-1489-7

    Article  Google Scholar 

  • Buzan JR, Huber M (2020) Moist heat stress on a hotter earth. Annu Rev Earth Planet Sci 48(1):623–655. https://doi.org/10.1146/annurev-earth-053018-060100

    Article  CAS  Google Scholar 

  • Carril AF, Menéndez CG, Remedio ARC, Robledo F, Sörensson A, Tencer B, Boulanger J-P, de Castro M, Jacob D, Le Treut H, Li LZX, Penalba O, Pfeifer S, Rusticucci M, Salio P, Samuelsson P, Sanchez E, Zaninelli P (2012) Performance of a multi-RCM ensemble for South Eeastern South America. Clim Dyn 39(12):2747–2768. https://doi.org/10.1007/s00382-012-1573-z

    Article  Google Scholar 

  • Carril A, Cavalcanti I, Menéndez C, Sörensson A, López-Franca N, Rivera J, Robledo F, Zaninelli P, Ambrizzi T, Penalba O, da Rocha R, Sánchez E, Bettolli M, Pessacg N, Renom M, Ruscica R, Solman S, Tencer B, Grimm A, Rusticucci M, Cherchi A, Tedeschi R, Zamboni L (2016) Extreme events in the La Plata basin: a retrospective analysis of what we have learned during CLARIS-LPB project. Climate Res 68(2–3):95–116. https://doi.org/10.3354/cr01374

    Article  Google Scholar 

  • Ceccherini G, Russo S, Ameztoy I, Romero CP, Carmona-Moreno C (2016) Magnitude and frequency of heat and cold waves in recent decades: the case of South America. Nat Hazards Earth Syst Sci 16:821–831. https://doi.org/10.5194/nhess-16-821-2016

    Article  Google Scholar 

  • Cerne SB, Vera CS (2011) Influence of the intraseasonal variability on heat waves in subtropical South America. Clim Dyn 36(11–12):2265–2277. https://doi.org/10.1007/s00382-010-0812-4

    Article  Google Scholar 

  • Cerne SB, Vera CS, Liebmann B (2007) The nature of a heat wave in Eastern Argentina occurring during SALLJEX. Mon Weather Rev 135(3):1165–1174. https://doi.org/10.1175/MWR3306.1

    Article  Google Scholar 

  • Christidis N, Stott PA (2016) Attribution analyses of temperature extremes using a set of 16 indices. Weather Clim Extremes 14:24–35. https://doi.org/10.1016/j.wace.2016.10.003

    Article  Google Scholar 

  • Coffel ED, Horton RM, de Sherbinin A (2018) Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ Res Lett 13(1):014001. https://doi.org/10.1088/1748-9326/aaa00e

    Article  Google Scholar 

  • Collins WJ, Bellouin N, Doutriaux-Boucher M, Gedney N, Halloran P, Hinton T, Hughes J, Jones CD, Joshi M, Liddicoat S, Martin G, O’Connor F, Rae J, Senior C, Sitch S, Totterdell I, Wiltshire A, Woodward S (2011) Development and evaluation of an Earth-System model – HadGEM2. Geosci Model Dev 4(4):1051–1075. https://doi.org/10.5194/gmd-4-1051-2011

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner MF, Allen MR, Andrews T, Beyerle U, Bitz CM, Bony S, Booth BBB (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker TF, Qin D, Plattner G-K, Tignor MMB, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013 - the physical science basis: contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, pp 1029–1136. (Intergovernmental Panel on Climate Change)

  • Coppola E, Raffaele F, Giorgi F, Giuliani G, Xuejie G, Ciarlo JM, Sines TR, Torres-Alavez JA, Das S, di Sante F, Pichelli E, Glazer R, Müller SK, Omar A, Ashfaq S, Bukovsky M, Im M, Jacob E-S, Teichmann D, Remedio C, Remke A, Kriegsmann T, Bülow A, Weber K, Buntemeyer T, Sieck L, K., Rechid D (2021) Climate hazard indices projections based on CORDEX-CORE, CMIP5 and CMIP6 ensemble. Clim Dyn 57(5–6):1293–1383. https://doi.org/10.1007/s00382-021-05640-z

    Article  Google Scholar 

  • Coronato T, Carril AF, Zaninelli PG, Giles J, Ruscica R, Falco M, Sörensson AA, Fita L, Li LZX, Menéndez CG (2020) The impact of soil moisture–atmosphere coupling on daily maximum surface temperatures in Southeastern South America. Clim Dyn 55(9–10):2543–2556. https://doi.org/10.1007/s00382-020-05399-9

    Article  Google Scholar 

  • Dereczynski C, Chan Chou S, Lyra A, Sondermann M, Regoto P, Tavares P, Chagas D, Gomes JL, Rodrigues DC Y Skansi, M. d. l. M. (2020). Downscaling of climate extremes over South America – Part I: model evaluation in the reference climate. Weather Clim Extremes, 29:100273. https://doi.org/10.1016/j.wace.2020.100273

  • Dixon P (2006) Nearest neighbor methods. Encyclopedia Environmetrics. https://doi.org/10.1002/9780470057339.van007

    Article  Google Scholar 

  • Domeisen DIV, Eltahir EAB, Fischer EM, Knutti R, Perkins-Kirkpatrick SE, Schär C, Seneviratne SI, Weisheimer A, Wernli H (2023) Prediction and projection of heatwaves (2023). Nat Reviews Earth Environ 4:36–50. https://doi.org/10.1038/s43017-022-00371-z

    Article  Google Scholar 

  • Donat MG, Alexander LV, Yang H, Durre I, Vose R, Dunn RJH, Willett KM, Aguilar E, Brunet M, Caesar J, Hewitson B, Jack C, Klein Tank AMG, Kruger AC, Marengo J, Peterson TC, Renom M, Oria Rojas C, Rusticucci M, Salinger J, Elrayah AS, Sekele SS, Srivastava AK, Trewin B, Villarroel C, Vincent LA, Zhai P, Zhang X, y, Kitching S (2013) Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118(5):2098–2118. https://doi.org/10.1002/jgrd.50150

  • Dosio A, Mentaschi L, Fischer EM, Wyser K (2018) Extreme heat waves under 1.5°C and 2°C global warming. Environ Res Lett 13:054006. https://doi.org/10.1088/1748-9326/aab827

    Article  Google Scholar 

  • Dunn RJH, Alexander LV, Donat MG, Zhang X, Bador M, Herold N, Lippmann T, Allan R, Aguilar E, Barry AA, Brunet M, Caesar J, Chagnaud G, Cheng V, Cinco T, Durre I, Guzman R, Htay TM, Ibadullah W, Ibrahim WMB, Khoshkam MKI, Kruger M, Kubota A, Leng H, Lim TW, Li-Sha G, Marengo L, Mbatha J, McGree S, Menne S, Milagros Skansi M, Ngwenya M, Nkrumah S, Oonariya F, Pabon-Caicedo C, Panthou JD, Pham G, Rahimzadeh C, Ramos F, Salgado A, Salinger E, Sané J, Sopaheluwakan Y, Srivastava A, Sun A, Timbal Y, Trachow B, Trewin N, Schrier B, Vazquez-Aguirre G, Vasquez J, Villarroel R, Vincent C, Vischel L, Vose T (2020) Development of an updated global land in situ-based data set of temperature and precipitation extremes: HadEX3. Journal of Geophysical Research: Atmospheres, 125(16) https://doi.org/10.1029/2019JD032263

  • Dury S, Bendjebbar P, Hainzelin E, Giordano T, Bricas N (2019) Food systems at risk. New trends and challenges. Rome: FAO-CIRAD-European Commission. https://doi.org/10.19182/agritrop/00080

  • Epstein Y, Moran DS (2006) Thermal comfort and the heat stress indices. Ind Health 44(3):388–398. https://doi.org/10.2486/indhealth.44.388

    Article  Google Scholar 

  • FAO (2018) The future of food and agriculture – Alternative pathways to 2050. Rome. 224 pp. Licence: CC BY-NC-SA 3.0 IGO. https://www.fao.org/3/I8429EN/i8429en.pdf. Accessed: 08 August 2023

  • Feron S, Cordero RR, Damiani A, Llanillo PJ, Jorquera J, Sepulveda E, Asencio V, Laroze D, Labbe F, Carrasco J, y, Torres G (2019) Observations and projections of heat waves in South America. Scientific Reports, 9(1):8173. https://doi.org/10.1038/s41598-019-44614-4

  • Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy precipitation and high-temperature extremes. Nat Clim Change 5(6):560–564. https://doi.org/10.1038/nclimate2617

    Article  Google Scholar 

  • Fischer EM, Schär C (2010) Consistent geographical patterns of changes in high-impact European heatwaves. Nat Geosci 3(6):398–403. https://doi.org/10.1038/ngeo866

    Article  CAS  Google Scholar 

  • Fischer EM, Sippel S, Knutti R (2021) Increasing probability of record-shattering climate extremes. Nat Clim Change 11:689–695. https://doi.org/10.1038/s41558-021-01092-9

    Article  Google Scholar 

  • Freychet N, Tett S, Yan Z, Li Z (2020) Underestimated change of wet-bulb temperatures over east and south China. Geophys Res Lett 47(3). https://doi.org/10.1029/2019GL086140

  • Giles JA, Ruscica RC, Menéndez CG (2021) Warm-season precipitation drivers in northeastern Argentina: diurnal cycle of the atmospheric moisture balance and land–atmosphere coupling. Int J Climatol 41(S1). https://doi.org/10.1002/joc.6724

  • Giorgetta MA, Jungclaus J, Reick CH, Legutke S, Bader J, Böttinger M, Brovkin V, Crueger T, Esch M, Fieg K, Glushak K, Gayler V, Haak H, Hollweg H-D, Ilyina T, Kinne S, Kornblueh L, Matei D, Mauritsen T, Mikolajewicz U, Mueller W, Notz D, Pithan F, Raddatz T, Rast S, Redler R, Roeckner E, Schmidt H, Schnur R, Segschneider J, Six KD, Stockhause M, Timmreck C, Wegner J, Widmann H, Wieners K-H, Claussen M, Marotzke J, Stevens B (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model Intercomparison Project Phase 5. J Adv Model Earth Syst 5(3):572–597. https://doi.org/10.1002/jame.20038

    Article  Google Scholar 

  • Giorgi F, Gutowski WJ (2015) Regional dynamical downscaling and the CORDEX initiative. Annu Rev Environ Resour 40(1):467–490. https://doi.org/10.1146/annurev-environ-102014-021217

    Article  Google Scholar 

  • Giorgi F, Coppola E, Solmon F, Mariotti L, Sylla M, Bi X, Elguindi N, Diro G, Nair V, Giuliani G, Turuncoglu U, Cozzini S, Güttler I, O’Brien T, Tawfik A, Shalaby A, Zakey A, Steiner A, Stordal F, Sloan L, Brankovic C (2012) RegCM4: model description and preliminary tests over multiple CORDEX domains. Climate Res 52:7–29. https://doi.org/10.3354/cr01018

    Article  Google Scholar 

  • Godde CM, Mason-D’Croz D, Mayberry DE, Thornton PK, Herrero M (2021) Impacts of climate change on the livestock food supply chain; a review of the evidence. Global Food Secur 28:100488. https://doi.org/10.1016/j.gfs.2020.100488

    Article  CAS  Google Scholar 

  • Gutiérrez JM, Jones RG, Narisma GT, Alves LM, Amjad M, Gorodetskaya IV, Grose M, Klutse NAB, Krakovska S, Li J, Martínez-Castro D, Mearns LO, Mernild SH, Ngo-Duc T, van den Hurk B, Yoon J-H (2021) Atlas. In: Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1927–2058. https://doi.org/10.1017/9781009157896.021Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-

  • Hannart A, Vera C, Cerne B, Otto FEL (2015) Causal influence of anthropogenic forcings on the Argentinian heat wave of December 2013. Bull Am Meteorol Soc 96(12):S41–S45. https://doi.org/10.1175/BAMS-D-15-00137.1

    Article  Google Scholar 

  • Hawkins E, Sutton R (2009) The potential to narrow uncertainty in regional climate predictions. Bull Am Meteorol Soc 90(8):1095–1108. https://doi.org/10.1175/2009BAMS2607.1

    Article  Google Scholar 

  • Henze N. & Zirkler B. (1990) A class of invariant consistent tests for multivariate normality. Commun Stat - Theory Methods 19(10):3595–3617. https://doi.org/10.1080/03610929008830400

  • Hersbach H, Bell B, Berrisford P, Biavati G, Horányi A, Muñoz Sabater J, Nicolas J, Peubey C, Radu R, Rozum I, Schepers D, Simmons A, Soci C, Dee D, Thépaut J-N (2018) ERA5 hourly data on single levels from 1979 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). (Accessed on 01-09-2019). https://doi.org/10.24381/cds.adbb2d47

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049. https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  • Hu T, Sun Y, Zhang X, Min S-K, Kim Y-H (2020) Human influence on frequency of temperature extremes. Environ Res Lett 15(6):064014. https://doi.org/10.1088/1748-9326/ab8497

    Article  Google Scholar 

  • Im E-S, Pal JS, Eltahir EAB (2017) Deadly heat waves projected in the densely populated agricultural regions of South Asia. Sci Adv 3(8):e1603322. https://doi.org/10.1126/sciadv.1603322

    Article  Google Scholar 

  • Jacob D (2001) A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drainage basin. Meteorol Atmos Phys 77:61–73. https://doi.org/10.1007/s007030170017

    Article  Google Scholar 

  • Jacob D, Podzun R (1997) Sensitivity studies with the regional climate model REMO. Meteorol Atmos Phys 63(1–2):119–129. https://doi.org/10.1007/BF01025368

    Article  Google Scholar 

  • Jones C (2019) Recent changes in the South America low-level jet. Clim Atmospheric Sci 2(1):20. https://doi.org/10.1038/s41612-019-0077-5

    Article  Google Scholar 

  • Kendon EJ, Rowell DP, Jones RG, y, Buonomo E (2008) Robustness of future changes in local precipitation extremes. Journal of Climate, 21(17):4280–4297. https://doi.org/10.1175/2008JCLI2082.1

  • Knutson TR, Ploshay JJ (2016) Detection of anthropogenic influence on a summertime heat stress index. Clim Change 138(1–2):25–39. https://doi.org/10.1007/s10584-016-1708-z

    Article  Google Scholar 

  • Lewis SC, Karoly DJ (2013) Anthropogenic contributions to Australia’s record summer temperatures of 2013. Geophys Res Lett 40(14):3705–3709. https://doi.org/10.1002/grl.50673

    Article  Google Scholar 

  • Li C, Sun Y, Zwiers F, Wang D, Zhang X, Chen G, Wu H (2020) Rapid warming in summer wet bulb globe temperature in China with human-induced climate change. J Clim 33(13):5697–5711. https://doi.org/10.1175/JCLI-D-19-0492.1

    Article  Google Scholar 

  • Li C, Zwiers F, Zhang X, Li G, Sun Y, Wehner M (2021) Changes in annual extremes of daily temperature and precipitation in CMIP6 models. J Clim 34(9):3441–3460. https://doi.org/10.1175/JCLI-D-19-1013.1

    Article  Google Scholar 

  • Llopart M, Domingues LM, Torma C, Giorgi F, da Rocha RP, Ambrizzi T, Reboita MS, Alves LM, Coppola E, da Silva ML, Souza D (2021) Assessing changes in the atmospheric water budget as drivers for precipitation change over two CORDEX-CORE domains. Clim Dyn 57:1615–1628. https://doi.org/10.1007/s00382-020-05539-1

    Article  Google Scholar 

  • Lobell DB, Cahill KN, y, Field CB (2007) Historical effects of temperature and precipitation on California crop yields. Climatic Change, 81(2):187–203. https://doi.org/10.1007/s10584-006-9141-3

  • López-Franca N, Zaninelli PG, Carril AF, Menéndez CG, y, Sánchez E (2016) Changes in temperature extremes for 21st century scenarios over South America derived from a multi-model ensemble of regional climate models. Climate Research, 68(2–3):151–167. https://doi.org/10.3354/cr01393

  • Lovino MA, Müller OV, Berbery EH, Müller GV (2018) How have daily climate extremes changed in the recent past over northeastern Argentina? Glob Planet Change 168:78–97. https://doi.org/10.1016/j.gloplacha.2018.06.008

    Article  Google Scholar 

  • Madsen H, Rasmussen PF, y, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resources Research, 33:747–757

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper SCB, Riahi K, Thomson A, Velders GJM, van Vuuren DP (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change 109(1–2):213–241. https://doi.org/10.1007/s10584-011-0156-z

    Article  CAS  Google Scholar 

  • Menéndez CG, Zaninelli PG, Carril AF, Sánchez E (2016) Hydrological cycle, temperature, and land surface-atmosphere interaction in the La Plata Basin during summer: response to climate change. Climate Res 68(2–3):231–241. https://doi.org/10.3354/cr01373

    Article  Google Scholar 

  • Miranda VFVV, dos Santos DM, Peres LF, Salvador C, Nieto R, Müller GV, Thielen D, Libonati R (2023) Heat stress in South America over the last four decades: a bioclimatic analysis. Theoret Appl Climatol. https://doi.org/10.1007/s00704-023-04668-x

    Article  Google Scholar 

  • Montini TL, Jones C, Carvalho LMV (2019) The south American low-level jet: a new climatology, variability, and changes. J Geophys Research: Atmos 124(3):1200–1218. https://doi.org/10.1029/2018JD029634

    Article  Google Scholar 

  • Mora C, Dousset B, Caldwell IR, Powell FE, Geronimo RC, Bielecki C, Counsell CWW, Dietrich BS, Johnston ET, Louis LV, Lucas MP, McKenzie MM, Shea AG, Tseng H, Giambelluca TW, Leon LR, Hawkins E, Trauernicht C (2017) Global risk of deadly heat. Nat Clim Change 7(7):501–506. https://doi.org/10.1038/nclimate3322

    Article  Google Scholar 

  • Nuñez MN, Ciapessoni HH, Rolla A, Kalnay E, Cai M (2008) Impact of land use and precipitation changes on surface temperature trends in Argentina. J Phys Res 113(D6):D06111. https://doi.org/10.1029/2007JD008638

    Article  Google Scholar 

  • Pal JS, Eltahir EAB (2016) Future temperature in southwest Asia projected to exceed a threshold for human adaptability. Nat Clim Change 6(2):197–200. https://doi.org/10.1038/nclimate2833

    Article  Google Scholar 

  • Perkins SE (2015) A review on the scientific understanding of heatwaves—their measurement, driving mechanisms, and changes at the global scale. Atmos Res 164–165:242–267. https://doi.org/10.1016/j.atmosres.2015.05.014

    Article  Google Scholar 

  • Piticar A, Cheval S, Frighenciu M (2019) A review of recent studies on heat wave definitions, mechanisms, changes, and impact on mortality. Forum Geografic, XVIII. 296–114. https://doi.org/10.5775/fg.2019.019.d

  • Raymond C, Matthews T, Horton RM (2020) The emergence of heat and humidity too severe for human tolerance. Sci Adv 6(19):eaaw1838. https://doi.org/10.1126/sciadv.aaw1838

    Article  Google Scholar 

  • Reboita MS, da Rocha RP, Dias CG, Ynoue RY (2014) Climate projections for south America: regcm3 driven by hadcm3 and echam5. Adv Meteorol 2014:1–17. https://doi.org/10.1155/2014/376738

    Article  Google Scholar 

  • Rivera JA, Arias PA, Sörensson AA, Zachariah M, Barnes C, Philip S, Kew, S, Vautard R, Koren G, Pinto I, Vahlberg M, Singh R, Raju E, Li S, Yang W, Vecchi G.A, Harrington LJ and Otto FEL (2023) 2022 early-summer heatwave in Southern South America: 60 times more likely due to climate change Climatic Change 176(8). https://doi.org/10.1007/s10584-023-03576-3

  • Rothfusz L (1990) The Heat Index equation(or, more than you ever wanted to Know about Heat Index). Technical attachment (SR 90 – 23). National Weather Service (NWS)

  • Ruscica RC, Menéndez CG, Sörensson AA (2016) Land surface-atmosphere interaction in future south American climate using a multi-model ensemble. Atmospheric Sci Lett 17(2):141–147. https://doi.org/10.1002/asl.635

    Article  Google Scholar 

  • Russo S, Sillmann J, Sterl A (2017) Humid heat waves at different warming levels. Sci Rep 7(1):7477. https://doi.org/10.1038/s41598-017-07536-7

    Article  CAS  Google Scholar 

  • Rusticucci M, Barrucand M (2004) Observed trends and changes in temperature extremes over Argentina. J Clim 17:4099–4107. https://doi.org/10.1175/1520-0442(2004)017<4099:OTACIT>2.0.CO;2

  • Rusticucci M, Barrucand M, Collazo S (2016) Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases. Int J Climatol 37(6):3003–3017. https://doi.org/10.1002/joc.4895

    Article  Google Scholar 

  • Samuelsson P, Jones CG, Willén U, Ullerstig A, Gollvik S, Hansson U, Jansson C, Kjellström E, Nikulin G, Wyser K (2011) The Rossby Centre Regional Climate model RCA3: model description and performance. Tellus A 63(1):4–23. https://doi.org/10.1111/j.1600-0870.2010.00478.x

    Article  Google Scholar 

  • Schär C (2016) The worst heat waves to come. Nat Clim Change 6(2):128–129. https://doi.org/10.1038/nclimate2864

    Article  Google Scholar 

  • Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a changing climate: a review. Earth Sci Rev 99(3):125–161. https://doi.org/10.1016/j.earscirev.2010.02.004

    Article  CAS  Google Scholar 

  • Seneviratne SI, Zhang X, Adnan M, Badi W, Dereczynski C, Di Luca A, Ghosh S, Iskandar I, Kossin J, Lewis S, Otto F, Pinto I, Satoh M, Vicente-Serrano SM, Wehner M, Zhou B (2021) Weather and Climate Extreme Events in a Changing Climate. In: Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, Caud N, Chen Y, Goldfarb L, Gomis MI, Huang M, Leitzell K, Lonnoy E, Matthews JBR, Maycock TK, Waterfield T, Yelekçi O, Yu R, Zhou B (eds) Climate Change 2021: The Physical Science Basis. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp 1513–1766. https://doi.org/10.1017/9781009157896.013Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-

  • Sera F, Hashizume M, Honda Y, Lavigne E, Schwartz J, Zanobetti A, Tobias A, Iñiguez C, Vicedo-Cabrera AM, Blangiardo M, Armstrong B, Gasparrini A (2020) Air conditioning and heat-related mortality: a multi-country longitudinal study. Epidemiol (Cambridge Mass) 31(6):779–787. https://doi.org/10.1097/EDE.0000000000001241. https://pubmed.ncbi.nlm.nih.gov/33003149/

    Article  Google Scholar 

  • Seth A, Rojas M, Rauscher SA (2010) CMIP3 projected changes in the annual cycle of the South American Monsoon. Clim Change 98(3–4):331–357. https://doi.org/10.1007/s10584-009-9736-6

    Article  Google Scholar 

  • Sherwood S, Fu Q (2014) A drier future? Science 343(6172):737–739. https://doi.org/10.1126/science.1247620

    Article  CAS  Google Scholar 

  • Sherwood SC, Huber M (2010) An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci 107(21):9552–9555. https://doi.org/10.1073/pnas.091335210

    Article  CAS  Google Scholar 

  • Skansi MdlM, Brunet M, Sigró J, Aguilar E, Arevalo Groening JA, Bentancur OJ, Castellón Geier YR, Amaya C, Jácome RL, Ramos HM, Rojas AO, Pasten C, Mitro AMS, Villaroel S, Jiménez C, Martínez R, Alexander LV, Jones P (2013) Warming and wetting signals emerging from analysis of changes in climate extreme indices over South America. Glob Planet Change 100:295–307. https://doi.org/10.1016/j.gloplacha.2012.11.004

    Article  Google Scholar 

  • Soares WR, Marengo JA (2009) Assessments of moisture fluxes east of the andes in South America in a global warming scenario: assessing moisture fluxes east of the Andes. Int J Climatol 29(10):1395–1414. https://doi.org/10.1002/joc.1800

    Article  Google Scholar 

  • Solman SA, Sanchez E, Samuelsson P, da Rocha RP, Li L, Marengo J, Pessacg NL, Remedio ARC, Chou SC, Berbery H, Le Treut H, de Castro M, Jacob D (2013) Evaluation of an ensemble of regional climate model simulations over South America driven by the ERA-Interim reanalysis: model performance and uncertainties. Clim Dyn 41(5–6):1139–1157. https://doi.org/10.1007/s00382-013-1667-2

    Article  Google Scholar 

  • Speizer S, Raymond C, Ivanovich C, Horton RM (2022) Concentrated and intensifying humid heat extremes in the IPCC AR6 regions. Geophys Res Lett 49:e2021GL097261. https://doi.org/10.1029/2021GL097261

    Article  Google Scholar 

  • Stedinger J, Vogel R, Foufoula-Georgiou E (1993) Frequency analysis of extreme events. In: Maidment DR (ed) Handbook of Hydrology. McGraw-Hill, New York

    Google Scholar 

  • Stott PA, Stone DA, Allen MR (2004) Human contribution to the European heatwave of 2003. Nature 432(7017):610–614. https://doi.org/10.1038/nature03089

    Article  CAS  Google Scholar 

  • Stull R (2011) Wet-bulb temperature from relative humidity and air temperature. J Appl Meteorol Climatology 50(11):2267–2269. https://doi.org/10.1175/JAMC-D-11-0143.1

    Article  Google Scholar 

  • Suarez-Gutierrez L, Müller WA, Li C, Marotzke J (2020) Hotspots of extreme heat under global warming. Clim Dyn 55(3–4):429–447. https://doi.org/10.1007/s00382-020-05263-w

    Article  Google Scholar 

  • Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Research: Atmos 106(D7):7183–7192. https://doi.org/10.1029/2000JD900719

    Article  Google Scholar 

  • Vicedo-Cabrera AM, Scovronick N, Sera F, Royé D, Schneider R, Tobias A, Astrom C, Guo Y, Honda Y, Hondula DM, Abrutzky R, Tong S, Coelho MdSZS, Saldiva PHN, Lavigne E, Correa PM, Ortega NV, Kan H, Osorio S, Kyselý J, Urban A, Orru H, Indermitte E, Jaakkola JJK, Ryti N, Pascal M, Schneider A, Katsouyanni K, Samoli E, Mayvaneh F, Entezari A, Goodman P, Zeka A, Michelozzi P, de’Donato F, Hashizume M, Alahmad B, Diaz MH, Valencia CDLC, Overcenco A, Houthuijs D, Ameling C, Rao S, Di Ruscio F, Carrasco-Escobar G, Seposo X, Silva S, Madureira J, Holobaca IH, Fratianni S, Acquaotta F, Kim H, Lee W, Iniguez C, Forsberg B, Ragettli MS, Guo YLL, Chen BY, Li S, Armstrong B, Aleman A, Zanobetti A, Schwartz J, Dang TN, Dung DV, Gillett N, Haines A, Mengel M, Huber V, Gasparrini A (2021) The burden of heat-related mortality attributable to recent human-induced climate change. Nat Clim Change 11(6):492–500. https://doi.org/10.1038/s41558-021-01058-x

    Article  CAS  Google Scholar 

  • von Storch H, Zwiers F (1999) Statistical analysis in Climate Research. Cambridge University Press. https://doi.org/10.1017/CBO9780511612336

  • Wan H, Zhang X, Zwiers F (2019) Human influence on Canadian temperatures. Clim Dyn 52(1):479–494. https://doi.org/10.1007/s00382-018-4145-z

    Article  Google Scholar 

  • Wilks D (2019) Statistical methods in the atmospheric sciences. Fourth edition. International geophysics series. Academic Press, United States of America

  • Xu F, Chan TO, y, Luo M (2020) Different changes in dry and humid heat waves over China. International Journal of Climatology, 41(2):1369–1382. https://doi.org/10.1002/joc.6815

  • Zaninelli PG, Menéndez CG, Falco M, López-Franca N, Carril AF (2019) Future hydroclimatological changes in South America based on an ensemble of regional climate models. Clim Dyn 52(1–2):819–830. https://doi.org/10.1007/s00382-018-4225-0

    Article  Google Scholar 

  • Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. WIREs Clim Change 2(6):851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

  • Zhu J, Wang S, Fischer EM (2022) Increased occurrence of day–night hot extremes in a warming climate. Clim Dyn 59:1297–1307. https://doi.org/10.1007/s00382-021-06038-7

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the CPA staff from CIMA Institute for their generous support and technical assistance. We especially thank Rodrigo Marquez, Claudio Mattera, Paula Richter, Alfredo Rolla, Pablo Roselli, and Gabriel Vieytes.

Funding

This work was partially supported by Consejo Nacional de Investigaciones Científicas y Técnicas [Project PIP-112-2020-0102141-CO]; and Universidad Nacional de Rosario [Project PID-UNR SECYT 80020190100069UR]; and Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación [Project PICT-2021-I-A-01097].

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Tanea Coronato. The first draft of the manuscript was written by Tanea Coronato and all authors commented on previous versions of the manuscript. The funding acquisition was obtained by Andrea F. Carril and Rita Abalone. The study was supervised by Andrea F. Carril. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tanea Coronato.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronato, T., Carril, A.F., Zaninelli, P.G. et al. Exploring warm extremes in South America: insights into regional climate change projections through dry-bulb and wet-bulb temperatures. Clim Dyn 62, 4391–4410 (2024). https://doi.org/10.1007/s00382-024-07140-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00382-024-07140-2

Keywords

Navigation